OPTIMUM STRUCTURAL DESIGN

Instructor: Fazıl Önder Sönmez

Class hours: Wednesdays 10.00–11.00 (M 2152), 11.00–12.00 (M 1200), 16.00–17.00 (M 2171)

Office hours: Mondays 10.00–12.00, Wednesdays 13.00–15.00, or drop by

Office: M 4215 e-mail: sonmezfa@boun.edu.tr Tel: (212) 359-7196, Cellular: (542) 780 6279
Assistant: Mustafa Şengör, mustafa.sengor@boun.edu.tr

Prerequisite: CmpE 150: Introduction to Computing, ME 345: Mechanics of Materials

Course Objectives: Applying optimization algorithms to obtain optimum design of structures (to minimize the weight (or cost) or to maximize performance); improving understanding of the mathematical basics, the ability to make a mathematical formulation to solve optimization problems, to make the choice of an appropriate optimization tool, and estimate the numerical effort.

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>26%</td>
</tr>
<tr>
<td>Quizzes</td>
<td>18%</td>
</tr>
<tr>
<td>Midterms</td>
<td>30%</td>
</tr>
<tr>
<td>Final</td>
<td>26%</td>
</tr>
<tr>
<td>Attendance</td>
<td>±2%</td>
</tr>
</tbody>
</table>

No make-up exam unless in emergency with written excuse.
Midterms and final are closed book and notes. Only one A4 paper is permitted containing formulas.

Week Topics
1 Introduction: Comparison of analysis and design formulations; basic concepts of design optimization (design variable, objective function, constraint, design domain, feasible region); types of design optimization: Size, shape, and topology optimization
2-4 Classical tools in structural optimization
 Differential Calculus, Variational Calculus, Lagrange Multipliers, Karush-Kuhn-Tucker conditions
 Quiz 1
 Quiz 2
 Midterm 1
5-6 Linear programming: Simplex method
 Quiz 3
 Nonlinear Programming I: Unconstrained optimization
7-8 Minimization of functions with one variable
 Zero order methods: Bracketing, golden section search,
 First order methods: Bisection,
 Second order methods: Newton’s method
9-10 Minimization of functions with several variables
 Sequential simplex (Nelder-Mead) method
 Steepest descent method
 Quadratic convergence and conjugate directions
 Fletcher & Reeves conjugate gradients method
 Project 1
 Midterm 2
11-12 Nonlinear programming II: Constrained optimization
 Method of feasible directions
 Penalty function methods
 Project 2
13 Optimization with surrogate models: Response surface method, artificial neural networks
14 Global optimization methods: Simulated annealing, genetic algorithms