ME 242 DYNAMICS

Instructor: Fazıl Önder Sönmez
Class hours: Mondays 15–17 (M 1100), Wednesdays 14–15 (M 1100)
Office hours: Mondays 13–15 and Wednesdays 15–17, or drop by
Office: M 4215
Phone: Office: (212) 359-7196, Cellular: (542) 780 6279
e-mail: sonmezfa@boun.edu.tr
Assistant: Enver Kapan, e-mail: enver.kapan@gmail.com, office: KB 216, tel: 7516
Prerequisite: ME 241 Statics
Prerequisites by topic: Statics (free body diagrams and vector algebra) and differential calculus
Catalog Description: Dynamics of particles: Rectilinear and curvilinear motion. Newton’s laws, momentum and angular momentum methods. Work and energy. Systems of particles. Dynamics of rigid bodies; kinematics, Euler’s Laws, angular momentum. Work and energy methods for rigid bodies. Introduction to mechanical vibrations
Course objectives:
• Improve understanding of the fundamental notions and principles of dynamics.
• Find the relation between displacement, velocity, acceleration, and time for particles and rigid bodies without reference to the cause of the motion (kinematics).
• Determine the relation between the forces acting on particles and rigid bodies and their motion (kinetics).
• Develop the ability to formulate and systematically solve problems in dynamics.
Grading: Quizzes 24 % (Quiz problems will be similar to the quiz assignment problems)
 Midterms 39 %
 Final 37 %
 Attendance ±2 %

Tentative Course Schedule:
Week Topics
1 Introduction
 A. Dynamics of Particles
 Chapter 12: Kinematics of Particles
 1 Rectilinear motion of particles (Ch.12.1-3)
 1-2 Curvilinear motion of particles (Ch.12.4-8)
 2 Relative and dependent motion (Ch.12.9-10)
 Quiz 1
 Chapter 13: Kinetics of Particles: Force and Acceleration
 3-4 Newton’s second law of motion for a single particle and systems of particles (Ch. 13.1-6)
 Quiz 2
 Midterm 1
Chapter 14: Kinetics of Particles: Work and Energy
4-5 Principle of work and energy for a single particle and systems of particles, power and efficiency, conservative forces and potential energy, conservation of energy (Ch. 14)
 Quiz 3

Chapter 15: Kinetics of Particles: Impulse and Momentum
6-7 Principle of linear impulse and momentum for a single particle and systems of particles, conservation of linear momentum, impact, principle of angular impulse and momentum (Ch.15.1-7)
 Quiz 4

Midterm 2

B. Dynamics of Rigid Bodies

Chapter 16: Planar Kinematics of Rigid Bodies
7-8 General plane motion: Translation and rotation, relative motion (Ch. 16)
 Quiz 5

Chapter 17: Planar Kinetics of Rigid Bodies: Force and Acceleration
8-10 Equations for motion in a plane, translation and rotation (Ch.17)
 Quiz 6

Midterm 3

Chapter 18: Planar Kinetics of Rigid Bodies: Work and Energy
10-12 Principle of work and energy, conservation of energy (Ch. 18)
 Quiz 7

Chapter 19: Planar Kinetics of Rigid Bodies: Impulse and Momentum
12-13 Linear and angular momentum of rigid bodies, principle of impulse and momentum, conservation of momentum, eccentric impact (Ch. 19)
 Quiz 8

Chapter 22: Mechanical Vibrations