Food and Agriculture

From the Green Revolution to the Second Green Revolution

Outlook

• Monopolisation of global seed and agrochemicals trade. Even stronger monopolisation of GM crops.
• Loss of agro-biodiversity.
• Dissappearing small peasant farms.
• Expected influences of climatic change.
• Stress over farmlands due to changing diets and agro-fuel production.
• Debate on whether farmers or corporations will be in control. Debates over UPOV, TRIPS and Turkish seed law, 2006, no: 5553.
Patterns of Food Production

• BC 10000 – Neolithic Revolution
 – Virtually all major crops and domestic animals were established in the first thousand years of agriculture.

• 1450-1700 Intercontinental exchange of food
 – Massive exchange of food between Americas and Europe and East Asia
 • Potatoes, maize, beans, squash, tomatoes, pineapples, cocoa (from Americas)
 • Rice (from Asia)
 • Wheat, onions, sugar cane, horses, pigs, cattle, sheep, goats (from Europe and Middle East)

• After mid 1800s – Industrial revolution
 – Fertilizers, agricultural machinery.

• After 1930’s – Invent of Industrial Agriculture
 – Increasing farm size with decreasing number of landholdings.
 – Massive production surplus.
 – Fossil fuel machinery; fertilizers; synthetic pesticides (the DDT); massive irrigation; high yield varieties (HYVs).
• Global statistics (by year 2000)
 – Almost all arable land under cultivation – 0.3% annual growth rate over the past 30 years.
 – Diminishing returns on fertilizer consumption due to nutrients saturation; today increasing in “under-fertilized countries” such as China, India and Brazil.
 – Diminishing returns on pesticides consumption; due to increased resistance in pest species. Consumption triples since 1970s.

 – Massive irrigation projects and large dams with multiple short and long term environmental effects. Today 17% of croplands irrigated. Irrigation constitutes 70% of world’s freshwater consumption.
 – HYVs after 1960s – the strains that divert more of the photosynthetic activity away from the stems, leaves and root to the seed; their hybrids.
Green Revolution

• 1943 – Rockefeller Foundation in Mexico.
 – Norman Borlaug the Nobel Laureate (1970)
• 1960 – In India
 – Tripled food production in three years
• In 35 years, global food production doubled
 – Food production growth outpaced population growth (the former 4% the latter 2% annually)

• Observed benefits
 – Relief for world hunger
 – Relief on deforestation and other undesired land conversion

• Observed costs
 – Water problems
 – Agricultural pollution
 – Soil conservation problems
 – Lost of traditional crop gene pool
 – Lost of traditional, diverse production methods
 – Concentration of wealth on landlords.
Future

- IFFR, International Food Policy Research Institute Report
 - Land limits almost reached.
 - Photosynthetic potential almost reached.
 - Developing world will be the major demander and the developed world will be the major supplier of food.
 - Genetic Revolution?
- Global structural problems
 - 70% of grain fed to cattle in US
 - Major land under cash crops cultivation rather than food.

Genetic Engineering

- Now, Rockefeller Foundation called for a Second Green Revolution:
 - “Double green revolution” by the emergence of biotechnology and genetic manipulations.
• GE:
 – Makes it possible to crossbreed genetically different plants and to incorporate desired traits into crops and animals.
 – No more limited to existing gene pool like the first green revolution; crosses the boundaries of species and plants animals and bacteria.
- **Promises**
 - Keep food fresh in market (FlavSavr tomato)
 - Built in resistance to insects that come from bacterium BT (Bt-crops of Monsanto) – reduced pesticide use.
 - Numerous plants resistant to Roundup herbicide – allows no till methods (Roundup crops of Monsanto)
 - Increase tolerance to certain environmental conditions, such as salt, draught etc.
 - Increase nutritional value, vitamins content of food crops
 - Incorporate certain vaccines into human diet.

- **Environmental problems**
 - Pests may develop resistance to built in toxins (superpests)
 - BT crops can genetically pollute the environment, creating superpests elsewhere.
 - Genetic pollution creating superweeds elsewhere
 - The story of the Canadian farmer, Percy Schmeiser; brought to court by Monsanto, he lost the case.
 - Other unanticipated “introduced species” effects.
• Food safety problems
 – Allergic responses
 – Transfer of antibiotics resistance
 – Plants themselves may create toxic tissues in response to gene transfer
 – Influence on immune systems?

• Equity problems
 – Corporations and intellectual property rights
 • The terminator technology
 – Spreading the technology in China, India, Philippines can make it cheap; but it further spreads
 – Seed “piracy”, further spreading of GM crops and genetic contamination.
• Further reading, Vandana Shiva, Stolen Harvest, Chapter 6.

Seed and Biodiversity Issues

• Should seed be conserved by farmers or corporations?
 – TRIPS of WTO – Agreement on Trade Related Intellectual Property Rights (1994)
 – Seed law of Turkey, year 2006, No: 5553.
• Protocols and laws on biodiversity and biosecurity
 – UN Convention on Biological Diversity (1992)
 – Cartagena Protocol on Biosafety, Montreal, Jan 2000 (Entry into force, September 2001)
 • Precautionary principle: lack of scientific certainty due to insufficient relevant scientific information and knowledge … shall not prevent [a country] from taking a decision on the import of genetically modified organisms.

• Where there are threats of serious or irreversible damage lack of scientific certainty should not be used as a reason for failing to take measures to prevent potential damage.
 • Shipments containing GM food must be labeled.
 – Biosecurity law of Turkey, year 2010, No: 5977