Intergenerational Educational Mobility and Preferences for Redistribution in Europe

ORHAN TORUL Boğaziçi University

OĞUZ ÖZTUNALI Istanbul Bilgi University

ONLINE APPENDIX

This online appendix presents the results of our robustness experiments and sensitivity analysis. The first section reports the results of ordered logit and probit regressions, while the second section reports the results of restricting the birth cohorts to specific decades.

1 Ordered Logit and Probit Regressions

Table 1: Ordered Logit Regression Results for 9-Category Educational Mobility

Preference for Redistribution (v198)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5) del 5 99*** 041) 01*** 062) 72*** 052) 01*** 057) 03*** 083) 62***
$E = 2 \mid P = 1 \\ (0.042) & (0.042) & (0.041) & (0.041) & (0.041) \\ (0.042) & (0.042) & (0.041) & (0.041) & (0.041) \\ (0.042) & (0.063) & (0.063) & (0.063) & (0.062) & (0.041) \\ (0.063) & (0.063) & (0.063) & (0.063) & (0.062) & (0.041) \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.056) & (0.057) & (0.057) & (0.057) & (0.057) & (0.057) \\ (0.083) & (0.083) & (0.082) & (0.083) & (0.083) & (0.083) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.083) & (0.083) \\ (0.069) & (0.070) & (0.070) & (0.070) & (0.070) & (0.070) \\ (0.041) & (0.042) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) & (0.042) \\ (0.0107) & Cond. Abs. Upward Mobility (MAcatC1) & & & & & & & & & & & & & & & & & & &$	99*** 941) 91*** 962) 72*** 952) 91*** 957) 93*** 983) 92***
$E = 3 \mid P = 1 \\ 0.275^{***} & 0.275^{***} & 0.281^{***} & 0.290^{***} & 0.25^{***} \\ (0.063) & (0.063) & (0.063) & (0.062) & (0.062) \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.056) & (0.057) & (0.057) & (0.057) & (0.057) & (0.057) & (0.057) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.083) & (0.082) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.083) & (0.083) & (0.083) \\ (0.069) & (0.070) & (0.070) & (0.070) & (0.070) & (0.070) & (0.070) \\ (0.041) & (0.042) & (0.042) & (0.042) & (0.042) & (0.042) & (0.042) \\ (0.041) & (0.042) & (0.042) & (0.042) & (0.042) & (0.144) \\ (0.044) & Abs. Upward Mobility (MAcatM) & & & & & & & & & & & & & & & & & & &$	041) 01*** 062) 72*** 052) 01*** 057) 03*** 083) 52***
$E = 3 \mid P = 1 \\ 0.275^{***} & 0.275^{***} & 0.281^{***} & 0.290^{***} & 0.281^{***} \\ (0.063) & (0.063) & (0.063) & (0.062) & (0.062) \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.056) & (0.057) & (0.057) & (0.057) & (0.057) & (0.057) & (0.057) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.083) & (0.082) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.083) & (0.083) & (0.083) \\ (0.069) & (0.070) & (0.070) & (0.070) & (0.070) & (0.070) & (0.070) \\ (0.041) & (0.042) & (0.042) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) & (0.044) \\ (0.044) & (0.042) & (0.042) & (0.044) & (0.044) \\ (0.044) & (0.042) & (0.042) & (0.044) \\ (0.044) & (0.042) & (0.042) & (0.044) \\ (0.044) & (0.042) & (0.042) & (0.044) \\ (0.044) & (0.042) & (0.042) & (0.044) \\ (0.044) & (0.042) & (0.042) & (0.044) \\ (0.044) & (0.042) & (0.042) & (0.044) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.044) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) & (0.042) & (0.042) & (0.042) \\ (0.042) $	041) 01*** 062) 72*** 052) 01*** 057) 03*** 083) 52***
$E=3 \mid P=1 \\ (0.063) & (0.063) & (0.063) & (0.062) & (0.062) \\ (0.063) & (0.063) & (0.063) & (0.062) & (0.062) \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.056) & (0.057) & (0.057) & (0.057) & (0.057) \\ (0.056) & (0.057) & (0.057) & (0.057) & (0.057) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.082) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.082) \\ (0.069) & (0.070) & (0.070) & (0.070) & (0.070) \\ (0.069) & (0.070) & (0.070) & (0.070) & (0.070) \\ (0.041) & (0.042) & (0.042) & (0.042) & (0.042) \\ (0.107) \\ Cond. Abs. Upward Mobility (MAcatC1) \\ Abs. Upward Mobility (MAcatM) \\ \\ -0.4 \\ (0.041) & (0.042) & (0.042) & (0.044) \\ (0.044) & (0.042) & (0.044) \\ (0.044) & (0.042) & (0.044) \\ (0.044) & (0.044) & (0.044) \\ (0.044) & (0$	01*** 062) 72*** 052) 01*** 057) 23*** 083) 52***
$E = 2 \mid P = 2 \\ 0.170^{***} & 0.167^{***} & 0.171^{***} & 0.172^{***} & 0.17 \\ (0.050) & (0.052) & (0.052) & (0.052) & (0.052) & (0.052) \\ (0.050) & (0.052) & (0.05$	062) 72*** 052) 01*** 057) 23*** 083) 62***
$E = 2 \mid P = 2 \\ (0.050) (0.052) $	72*** 952) 91*** 957) 93*** 983) 92***
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	052) 01*** 057) 23*** 083) 52***
$E = 3 \mid P = 2 \\ (0.056) & (0.057) & (0.057) & (0.057) & (0.057) & (0.057) \\ (0.056) & (0.057) $	01*** 057) 03*** 083) 62*** 070)
$E = 2 \mid P = 3 \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.083) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.083) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.083) \\ (0.083) & (0.082) & (0.083) & (0.083) & (0.083) \\ (0.069) & (0.070) & (0.070) & (0.070) & (0.070) \\ (0.0120) & (0.0122*** & 0.122$	23*** 083) 52*** 070)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$)83) 52***)70)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52*** ()70)
(0.069) (0.070) (0.0	070)
Dog(Income)	
(0.041) (0.042	
Intergenerational Persistence (IGP) 0.206* (0.107) Cond. Abs. Upward Mobility (MAcatC1) -0.351** (0.144) Abs. Upward Mobility (MAcatM) -0.4 (0.	.1***
Cond. Abs. Upward Mobility (MAcatC1) Abs. Upward Mobility (MAcatM) (0.107) -0.351** (0.144) -0.4 (0.)42)
Cond. Abs. Upward Mobility (MAcatC1) Abs. Upward Mobility (MAcatM) -0.351** (0.144) -0.4 (0.	
Abs. Upward Mobility (MAcatM) (0.144) -0.4 (0.	
Abs. Upward Mobility (MAcatM) -0.4 (0.	
(0.	
	23***
Constant cut1 -1 712*** -1 645*** -1 555*** -1 826*** -1 8	156)
	39***
	12)
	24***
	111)
	56***
	116)
	25***
	l 19) 25***
	(21)
	121)
	123)
	9***
	132)
	8***
	156)
	1***
	168)
Observations 32,425 32,425 32,425 32,425 32,	
Demographic Controls NO YES YES YES Y	425
Country FE YES YES YES YES Y	425 ES

Notes: This table presents the *ordered logit regression* results corresponding to Table 1 in the main text. Statistical significance is denoted by asterisks (**** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is *preferences for redistribution* (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are *GDIM*-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the *GDIM*-based measures are from the *EVS* 2008 wave.

Table 2: Ordered Probit Regression Results with 9-Category Educational Mobility

Preference for Redistribution (v198)

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
$E = 2 \mid P = 1$	0.053**	0.049**	0.053**	0.057**	0.058**
	(0.024)	(0.025)	(0.024)	(0.024)	(0.024)
$E=3 \mid P=1$	0.152***	0.151***	0.155***	0.161***	0.162***
	(0.036)	(0.036)	(0.036)	(0.035)	(0.035)
$E=2\mid P=2$	0.090***	0.088***	0.090***	0.091***	0.091***
	(0.029)	(0.031)	(0.030)	(0.030)	(0.030)
$E=3 \mid P=2$	0.167***	0.167***	0.170***	0.172***	0.173***
	(0.032)	(0.033)	(0.033)	(0.033)	(0.033)
$E = 2 \mid P = 3$	0.122**	0.119**	0.122**	0.122**	0.122**
	(0.050)	(0.050)	(0.050)	(0.050)	(0.050)
$E=3 \mid P=3$	0.206***	0.206***	0.209***	0.212***	0.213***
	(0.041)	(0.041)	(0.041)	(0.041)	(0.041)
log(Income)	0.067***	0.065***	0.065***	0.064***	0.064***
	(0.024)	(0.024)	(0.024)	(0.024)	(0.024)
Intergenerational Persistence (IGP)			0.129**		
			(0.064)		
Cond. Abs. Upward Mobility (MAcatC1)				-0.229***	
				(0.084)	
Abs. Upward Mobility (MAcatM)					-0.276***
					(0.090)
Constant cut1	-1.007***	-0.971***	-0.915***	-1.088***	-1.129***
	(0.047)	(0.048)	(0.054)	(0.063)	(0.066)
Constant cut2	-0.691***	-0.655***	-0.599***	-0.772***	-0.814***
	(0.039)	(0.040)	(0.047)	(0.061)	(0.065)
Constant cut3	-0.359***	-0.323***	-0.267***	-0.440***	-0.481***
	(0.033)	(0.037)	(0.043)	(0.062)	(0.068)
Constant cut4	-0.099***	-0.063*	-0.007	-0.180***	-0.221***
	(0.030)	(0.038)	(0.043)	(0.063)	(0.069)
Constant cut5	0.297***	0.333***	0.389***	0.216***	0.175**
	(0.031)	(0.042)	(0.048)	(0.064)	(0.070)
Constant cut6	0.524***	0.561***	0.617***	0.444***	0.403***
	(0.031)	(0.045)	(0.051)	(0.064)	(0.070)
Constant cut7	0.820***	0.857***	0.913***	0.740***	0.699***
	(0.033)	(0.051)	(0.057)	(0.069)	(0.075)
Constant cut8	1.237***	1.274***	1.330***	1.157***	1.116***
_	(0.046)	(0.065)	(0.067)	(0.082)	(0.087)
Constant cut9	1.531***	1.569***	1.625***	1.452***	1.411***
	(0.054)	(0.070)	(0.072)	(880.0)	(0.092)
Observations	32,425	32,425	32,425	32,425	32,425
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES
Country I L	110	11.0	11.0	110	11.0

Notes: This table presents the *ordered probit regression* results corresponding to Table 1 in the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is *preferences for redistribution* (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X | P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MacatM, and MacatC1 are *GDIM*-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the *GDIM*-based measures are from the EVS 2008 wave.

 Table 3: Ordered Logit Regression Results with 2-Category Education

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
P = 2	0.080*	0.077*	0.076*	0.074	0.074
	(0.046)	(0.046)	(0.046)	(0.045)	(0.045)
E = 2	0.180***	0.183***	0.184***	0.187***	0.189***
	(0.041)	(0.041)	(0.041)	(0.041)	(0.041)
log(Income)	0.138***	0.133***	0.133***	0.132***	0.132***
	(0.041)	(0.042)	(0.042)	(0.042)	(0.042)
Intergenerational Persistence (IGP)			0.171		
			(0.114)		
Cond. Abs. Upward Mobility (MAcatC1)				-0.311**	
				(0.151)	
Abs. Upward Mobility (MAcatM)					-0.385**
					(0.163)
Constant cut1	-1.786***	-1.756***	-1.685***	-1.922***	-1.984***
	(0.079)	(0.076)	(0.093)	(0.099)	(0.108)
Constant cut2	-1.221***	-1.191***	-1.120***	-1.357***	-1.419***
	(0.062)	(0.058)	(0.076)	(0.095)	(0.107)
Constant cut3	-0.654***	-0.624***	-0.553***	-0.790***	-0.852***
	(0.046)	(0.048)	(0.066)	(0.097)	(0.110)
Constant cut4	-0.224***	-0.194***	-0.123*	-0.360***	-0.421***
	(0.040)	(0.047)	(0.065)	(0.099)	(0.112)
Constant cut5	0.426***	0.456***	0.527***	0.291***	0.229**
	(0.041)	(0.055)	(0.073)	(0.101)	(0.114)
Constant cut6	0.801***	0.832***	0.902***	0.666***	0.604***
	(0.040)	(0.058)	(0.077)	(0.100)	(0.114)
Constant cut7	1.298***	1.329***	1.400***	1.164***	1.102***
	(0.045)	(0.074)	(0.090)	(0.111)	(0.123)
Constant cut8	2.026***	2.058***	2.129***	1.892***	1.831***
	(0.075)	(0.105)	(0.114)	(0.138)	(0.148)
Constant cut9	2.569***	2.601***	2.672***	2.435***	2.374***
	(0.096)	(0.120)	(0.129)	(0.150)	(0.160)
Observations	32,425	32,425	32,425	32,425	32,425
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES

Notes: This table presents the ordered logit regression results corresponding to Table A.3 in the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. P and E denote the education levels of the parent and subject, respectively. 1 (baseline, thus omitted to avoid multicollinearity) denotes lower and middle education, and 2 denotes upper (tertiary) education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.

Table 4: Ordered Probit Regression Results with 2-Category Education

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
P = 2	0.050*	0.049*	0.048*	0.047*	0.047*
	(0.028)	(0.028)	(0.028)	(0.028)	(0.028)
E = 2	0.106***	0.108***	0.109***	0.111***	0.112***
	(0.022)	(0.022)	(0.022)	(0.022)	(0.022)
log(Income)	0.073***	0.070***	0.070***	0.070***	0.070***
0.	(0.023)	(0.024)	(0.024)	(0.024)	(0.024)
Intergenerational Persistence (IGP)			0.109		
			(0.068)		
Cond. Abs. Upward Mobility (MAcatC1)				-0.208**	
				(880.0)	
Abs. Upward Mobility (MAcatM)					-0.256***
					(0.094)
Constant cut1	-1.046***	-1.029***	-0.984***	-1.140***	-1.180***
	(0.046)	(0.044)	(0.054)	(0.059)	(0.063)
Constant cut2	-0.730***	-0.714***	-0.668***	-0.824***	-0.865***
	(0.038)	(0.035)	(0.046)	(0.057)	(0.062)
Constant cut3	-0.398***	-0.382***	-0.336***	-0.492***	-0.532***
	(0.029)	(0.029)	(0.040)	(0.057)	(0.064)
Constant cut4	-0.139***	-0.122***	-0.077**	-0.232***	-0.273***
	(0.025)	(0.028)	(0.039)	(0.058)	(0.065)
Constant cut5	0.257***	0.274***	0.320***	0.164***	0.123*
	(0.026)	(0.033)	(0.044)	(0.058)	(0.065)
Constant cut6	0.484***	0.501***	0.547***	0.391***	0.351***
	(0.024)	(0.035)	(0.046)	(0.058)	(0.065)
Constant cut7	0.781***	0.798***	0.843***	0.688***	0.647***
	(0.026)	(0.042)	(0.052)	(0.063)	(0.070)
Constant cut8	1.197***	1.214***	1.260***	1.105***	1.064***
	(0.039)	(0.056)	(0.062)	(0.077)	(0.082)
Constant cut9	1.492***	1.509***	1.555***	1.399***	1.359***
	(0.048)	(0.061)	(0.066)	(0.082)	(0.087)
Observations	32,425	32,425	32,425	32,425	32,425
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES
	120	120	120	120	120

Notes: This table presents the ordered probit regression results corresponding to Table A.3 in the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. P and E denote the education levels of the parent and subject, respectively. 1 (baseline, thus omitted to avoid multicollinearity) denotes lower and middle education, and 2 denotes upper (tertiary) education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.

Table 5: Ordered Logit Regression Results with 2-Category Mobility

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
$E = 2 \mid P = 1$	0.187***	0.190***	0.191***	0.194***	0.195***
$E-Z \mid F-1$	(0.045)	(0.046)	(0.046)	(0.046)	(0.045)
$E=1 \mid P=2$	0.107	0.103	0.103	0.100	0.043)
$E-1 \mid F-2$	(0.076)	(0.075)	(0.076)	(0.075)	(0.075)
$E = 2 \mid P = 2$	0.250***	0.251***	0.251***	0.252***	0.253***
$E = Z \mid P = Z$					
1	(0.064)	(0.063)	(0.063)	(0.063)	(0.063)
log(Income)	0.138***	0.133***	0.132***	0.132***	0.132***
T	(0.041)	(0.042)	(0.042)	(0.042)	(0.042)
Intergenerational Persistence (IGP)			0.171		
			(0.114)	0.01144	
Cond. Abs. Upward Mobility (MAcatC1)				-0.311**	
				(0.151)	
Abs. Upward Mobility (MAcatM)					-0.385**
					(0.163)
Constant cut1	-1.784***	-1.754***	-1.683***	-1.920***	-1.982***
	(0.079)	(0.077)	(0.094)	(0.099)	(0.108)
Constant cut2	-1.219***	-1.189***	-1.118***	-1.355***	-1.417***
	(0.063)	(0.059)	(0.077)	(0.095)	(0.106)
Constant cut3	-0.652***	-0.622***	-0.551***	-0.788***	-0.850***
	(0.047)	(0.049)	(0.067)	(0.097)	(0.110)
Constant cut4	-0.222***	-0.192***	-0.120*	-0.357***	-0.419***
	(0.041)	(0.048)	(0.066)	(0.099)	(0.112)
Constant cut5	0.427***	0.458***	0.530***	0.293***	0.231**
	(0.042)	(0.056)	(0.074)	(0.101)	(0.114)
Constant cut6	0.802***	0.834***	0.905***	0.668***	0.606***
	(0.041)	(0.059)	(0.078)	(0.101)	(0.114)
Constant cut7	1.300***	1.331***	1.403***	1.166***	1.104***
	(0.046)	(0.074)	(0.091)	(0.111)	(0.123)
Constant cut8	2.028***	2.060***	2.131***	1.895***	1.833***
	(0.075)	(0.105)	(0.114)	(0.138)	(0.148)
Constant cut9	2.570***	2.603***	2.674***	2.437***	2.376***
	(0.096)	(0.120)	(0.129)	(0.150)	(0.160)
Observations	32,425	32,425	32,425	32,425	32,425
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES

Notes: This table presents the *ordered logit regression* results corresponding to Table A.2 in the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is *preferences for redistribution* (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower and middle education, and 2 denotes upper ((tertiary)) education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are *GDIM*-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the *GDIM*-based measures are from the EVS 2008 wave.

Table 6: Ordered Probit Regression with Results 2-Category Mobility

9*** 0. 025) (062 046) (3*** 0. 037) (3*** 0.	0.111*** (0.025) 0.058 (0.046) 0.153*** (0.037)	0.111*** (0.025) 0.058 (0.046) 0.153*** (0.037)	Model 4 0.113*** (0.025) 0.056 (0.046) 0.154*** (0.037) 0.070*** (0.024)	Model 5 0.114*** (0.025) 0.056 (0.046) 0.155*** (0.037) 0.070*** (0.024)
025) (062 046) (03*** 0. 037) (03*** 0.	(0.025) 0.058 (0.046) 0.153*** (0.037) 0.070***	(0.025) 0.058 (0.046) 0.153*** (0.037) 0.070*** (0.024) 0.110	(0.025) 0.056 (0.046) 0.154*** (0.037) 0.070***	(0.025) 0.056 (0.046) 0.155*** (0.037) 0.070***
025) (062 046) (03*** 0. 037) (03*** 0.	(0.025) 0.058 (0.046) 0.153*** (0.037) 0.070***	(0.025) 0.058 (0.046) 0.153*** (0.037) 0.070*** (0.024) 0.110	(0.025) 0.056 (0.046) 0.154*** (0.037) 0.070***	(0.025) 0.056 (0.046) 0.155*** (0.037) 0.070***
062 046) (03*** 0. 037) (03*** 0.	0.058 (0.046) 0.153*** (0.037) 0.070***	0.058 (0.046) 0.153*** (0.037) 0.070*** (0.024) 0.110	0.056 (0.046) 0.154*** (0.037) 0.070***	0.056 (0.046) 0.155*** (0.037) 0.070***
046) (33*** 0. 037) ('3*** 0.	(0.046) 0.153*** (0.037) 0.070***	(0.046) 0.153*** (0.037) 0.070*** (0.024) 0.110	(0.046) 0.154*** (0.037) 0.070***	(0.046) 0.155*** (0.037) 0.070***
3*** 0.037) (23*** 0.037)	0.153*** (0.037) 0.070***	0.153*** (0.037) 0.070*** (0.024) 0.110	0.154*** (0.037) 0.070***	0.155*** (0.037) 0.070***
)37) ('3*** 0.	(0.037) 0.070***	(0.037) 0.070*** (0.024) 0.110	(0.037) 0.070***	(0.037) 0.070***
3*** 0.	.070***	0.070*** (0.024) 0.110	0.070***	0.070***
		(0.024) 0.110		
024) ((0.024)	0.110	(0.024)	(0.024)
		(0.068)		
				-0.256***
				(0.094)
45*** -1	1.029*** -	0.983***	-1.139***	-1.179***
, ,		(0.054)	(0.059)	(0.063)
30*** -0).713*** -	0.668***	-0.823***	-0.864***
		(0.046)	(0.057)	(0.062)
98*** -0).381*** -	0.335***	-0.491***	-0.532***
		(0.041)	(0.057)	(0.064)
38*** -0	0.122***	-0.076*	-0.231***	-0.272***
, ,		(0.039)	(0.058)	(0.065)
8*** 0.	.275***	0.321***	0.165***	0.124*
)26) ((0.034)	(0.045)	(0.059)	(0.066)
55*** 0.	.502***	0.548***	0.392***	0.352***
)25) ((0.035)	(0.047)	(0.058)	(0.065)
1*** 0.	.798***	0.844***	0.688***	0.648***
)26) ((0.042)	(0.052)	(0.064)	(0.070)
8*** 1.	.215***	1.261***	1.105***	1.065***
040) ((0.057)	(0.062)	(0.077)	(0.082)
2*** 1.	.510***	1.556***	1.400***	1.360***
048) ((0.062)	(0.066)	(0.082)	(0.087)
425 3	32,425	32,425	32,425	32,425
	YES	YES	YES	YES
		YES	YES	YES
	046) 030*** -(038) 08*** -(030) 038*** -(026) 026) 025) 025) 026) 08*** 1 040) 022*** 1	046) (0.044) 030*** -0.713*** - 038) (0.035) 08*** -0.381*** - 030) (0.030) 038*** -0.122*** 026) (0.029) 08*** 0.275*** 026) (0.034) 055** 0.502*** 025) (0.035) 01*** 0.798*** 026) (0.042) 08*** 1.215*** 040) (0.057) 02*** 1.510*** 048) (0.062) 0425 0425 32,425 060 YES	45*** -1.029*** -0.983*** -0.046) (0.044) (0.054) (0.054) (0.035) (0.046) (0.035) (0.046) (0.035) (0.046) (0.030) (0.041) (0.030) (0.041) (0.052) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.039) (0.047) (0.045) (0.035) (0.047) (0.045) (0.035) (0.047) (0.052) (0.035) (0.047) (0.052) (0.035) (0.047) (0.052) (0.042) (0.052) (0.035) (0.042) (0.052) (0.035) (0.047) (0.062) (0.052) (0.035) (0.046) (0.057) (0.062) (0.066) (0.0	-0.208** (0.088) 45*** -1.029*** -0.983*** -1.139*** 046) (0.044) (0.054) (0.059) 30*** -0.713*** -0.668*** -0.823*** 038) (0.035) (0.046) (0.057) 08*** -0.381*** -0.335*** -0.491*** 030) (0.030) (0.041) (0.057) 38*** -0.122*** -0.076* -0.231*** 026) (0.029) (0.039) (0.058) 08*** 0.275*** 0.321*** 0.165*** 026) (0.034) (0.045) (0.059) 055*** 0.502*** 0.548*** 0.392*** 025) (0.035) (0.047) (0.058) 01*** 0.798*** 0.844*** 0.688*** 026) (0.042) (0.052) (0.064) 08*** 1.215*** 1.261*** 1.105*** 040) (0.057) (0.062) (0.077) 02*** 1.510*** 1.556*** 1.400*** 048) (0.062) (0.066) (0.082) 0425 32,425 32,425 32,425 045 YES YES

Notes: This table presents the *ordered probit regression* results corresponding to Table A.2 in the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is *preferences for redistribution* (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower and middle education, and 2 denotes upper ((tertiary)) education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are *GDIM*-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the *GDIM*-based measures are from the EVS 2008 wave.

Table 7: Ordered Logit Regression Results with Low-Educated Descendant Controls

Preference for Redistribution (v198)

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
$E = 2 \mid P = 1$	0.118***	0.113**	0.120***	0.126***	0.126***
$L-Z \mid F-1$	(0.045)	(0.045)	(0.044)	(0.043)	(0.043)
$E = 3 \mid P = 1$	0.292***	0.292***	0.299***	0.307***	0.308***
$L = 3 \mid I = 1$	(0.068)	(0.069)	(0.068)	(0.067)	(0.067)
E = 1 P = 2	0.147	0.150	0.150	0.149	0.148
$L-1 \mid F-Z$	(0.098)	(0.099)	(0.099)	(0.099)	(0.099)
$E = 2 \mid P = 2$	0.188***	0.188***	0.191***	0.192***	0.192***
$E-Z \mid F-Z$	(0.051)	(0.054)	(0.054)	(0.054)	(0.054)
E = 3 P = 2	0.308***	0.312***	0.316***	0.320***	0.321***
$E = 3 \mid P = 2$		(0.063)	(0.063)	(0.062)	(0.062)
E=1+D=2	(0.061)				
$E = 1 \mid P = 3$	0.088	0.090	0.089	0.087	0.087
E 21 D 2	(0.166)	(0.167)	(0.166)	(0.168)	(0.168)
$E = 2 \mid P = 3$	0.241***	0.240***	0.244***	0.243***	0.243***
E OLD O	(0.085)	(0.085)	(0.085)	(0.085)	(0.085)
$E=3 \mid P=3$	0.368***	0.373***	0.376***	0.381***	0.382***
1 (7)	(0.072)	(0.073)	(0.073)	(0.073)	(0.073)
log(Income)	0.125***	0.122***	0.121***	0.121***	0.120***
*	(0.042)	(0.042)	(0.042)	(0.042)	(0.042)
Intergenerational Persistence (IGP)			0.206*		
			(0.107)		
Cond. Abs. Upward Mobility (MAcatC1)				-0.349**	
11 Y 12 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15				(0.145)	0.403.000
Abs. Upward Mobility (MAcatM)					-0.421***
					(0.157)
Constant cut1	-1.698***	-1.622***	-1.532***	-1.802***	-1.865***
	(0.081)	(0.085)	(0.095)	(0.109)	(0.118)
Constant cut2	-1.133***	-1.056***	-0.967***	-1.237***	-1.300***
	(0.066)	(0.070)	(0.079)	(0.106)	(0.117)
Constant cut3	-0.565***	-0.489***	-0.399***	-0.669***	-0.732***
	(0.056)	(0.068)	(0.075)	(0.111)	(0.123)
Constant cut4	-0.135**	-0.058	0.032	-0.238**	-0.301**
	(0.053)	(0.069)	(0.076)	(0.114)	(0.126)
Constant cut5	0.515***	0.592***	0.682***	0.412***	0.349***
	(0.056)	(0.077)	(0.086)	(0.117)	(0.129)
Constant cut6	0.891***	0.968***	1.058***	0.788***	0.725***
	(0.056)	(0.082)	(0.092)	(0.118)	(0.131)
Constant cut7	1.388***	1.466***	1.556***	1.286***	1.223***
	(0.062)	(0.096)	(0.104)	(0.129)	(0.140)
Constant cut8	2.117***	2.195***	2.285***	2.015***	1.952***
_	(0.087)	(0.123)	(0.127)	(0.153)	(0.163)
Constant cut9	2.659***	2.738***	2.828***	2.558***	2.495***
	(0.107)	(0.137)	(0.141)	(0.165)	(0.175)
Observations	32,425	32,425	32,425	32,425	32,425
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES

Notes: This table presents the ordered logit regression results corresponding to Table A.4 in the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.

Table 8: Ordered Probit Regression Results with Low-Educated Descendant Controls

Preference for Redistribution (v198)

	(1)	(2)	(2)	(4)	(5)
VADIADIEC	(l)	(2)	(3) Madal 2	(4) Madal 4	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
$E = 2 \mid P = 1$	0.062**	0.059**	0.063**	0.067***	0.067***
$E = Z \mid P = 1$					
E=2+D=1	(0.026) 0.161***	(0.026) 0.161***	(0.025) 0.165***	(0.025) 0.171***	(0.025) 0.172***
$E = 3 \mid P = 1$					
	(0.039)	(0.039)	(0.039)	(0.038)	(0.038)
$E = 1 \mid P = 2$	0.082	0.083	0.084	0.082	0.082
E 21D 2	(0.058)	(0.059)	(0.059)	(0.059)	(0.059)
$E = 2 \mid P = 2$	0.101***	0.100***	0.102***	0.103***	0.102***
E 21D 2	(0.030) 0.177***	(0.032)	(0.031)	(0.031)	(0.031)
$E = 3 \mid P = 2$		0.179***	0.181***	0.184***	0.185***
	(0.035)	(0.037)	(0.036)	(0.036)	(0.036)
$E = 1 \mid P = 3$	0.055	0.055	0.054	0.052	0.052
E 21D 2	(0.101)	(0.103)	(0.102)	(0.103)	(0.103)
$E = 2 \mid P = 3$	0.132**	0.131**	0.133**	0.133**	0.133**
E OLD O	(0.051)	(0.052)	(0.052)	(0.052)	(0.052)
$E = 3 \mid P = 3$	0.216***	0.218***	0.220***	0.223***	0.224***
1 (7)	(0.042)	(0.043)	(0.043)	(0.043)	(0.043)
log(Income)	0.066***	0.064***	0.064***	0.064***	0.063***
T	(0.024)	(0.024)	(0.024)	(0.024)	(0.024)
Intergenerational Persistence (IGP)			0.129**		
			(0.063)	0.000***	
Cond. Abs. Upward Mobility (MAcatC1)				-0.228***	
A1 TY 136 1 TY 064 130				(0.084)	0.055***
Abs. Upward Mobility (MAcatM)					-0.275***
	0.000		0.007		(0.090)
Constant cut1	-0.999***	-0.957***	-0.901***	-1.074***	-1.115***
G	(0.047)	(0.050)	(0.055)	(0.066)	(0.070)
Constant cut2	-0.683***	-0.642***	-0.585***	-0.759***	-0.800***
G	(0.040)	(0.043)	(0.048)	(0.064)	(0.069)
Constant cut3	-0.351***	-0.309***	-0.253***	-0.426***	-0.467***
Constant and	(0.034)	(0.041)	(0.045)	(0.066)	(0.072)
Constant cut4	-0.091***	-0.049	0.007	-0.166**	-0.207***
Comptont out	(0.032)	(0.041)	(0.045)	(0.067)	(0.074)
Constant cut5	0.305***	0.347***	0.403***	0.230***	0.189**
0 1 10	(0.033)	(0.046)	(0.051)	(0.068)	(0.075)
Constant cut6	0.532***	0.574***	0.631***	0.458***	0.416***
0	(0.033)	(0.048)	(0.054)	(0.069)	(0.075)
Constant cut7	0.829***	0.871***	0.927***	0.754***	0.713***
Course to set out 0	(0.035)	(0.055)	(0.060)	(0.074)	(0.080)
Constant cut8	1.245***	1.288***	1.344***	1.171***	1.130***
Course to set to set 0	(0.047)	(0.067)	(0.069)	(0.086)	(0.091)
Constant cut9	1.540***	1.582***	1.639***	1.466***	1.425***
	(0.055)	(0.072)	(0.074)	(0.091)	(0.096)
Observations	22 425	22 425	22 425	22 425	22 425
Observations	32,425	32,425	32,425	32,425	32,425
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES

Notes: This table presents the *ordered probit regression* results corresponding to Table A.4 in the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is *preferences for redistribution* (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are *GDIM*-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the *GDIM*-based measures are from the *EVS* 2008 wave.

Table 9: Ordered Logit Regression Results without Intergenerational Mobility Controls

Preference for Redistribution (v198)

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
D 0	0.001**	0.005**	0.000**	0.050**	0.050**
P=2	0.061**	0.065**	0.062**	0.058**	0.058**
D 2	(0.027)	(0.028)	(0.028)	(0.028)	(0.028)
P=3	0.106**	0.109**	0.107**	0.102**	0.102**
F 0	(0.050)	(0.050)	(0.050)	(0.049)	(0.049)
E=2	0.116***	0.111***	0.117***	0.122***	0.122***
П. О	(0.041)	(0.041)	(0.040)	(0.040)	(0.040)
E=3	0.258***	0.258***	0.264***	0.272***	0.274***
1 (7)	(0.052)	(0.052)	(0.051)	(0.051)	(0.051)
log(Income)	0.125***	0.122***	0.121***	0.121***	0.121***
v	(0.041)	(0.042)	(0.042)	(0.042)	(0.042)
Intergenerational Persistence (IGP)			0.205*		
0 1 11 77 137 137 137			(0.107)	0.040##	
Cond. Abs. Upward Mobility (MAcatC1)				-0.348**	
				(0.146)	
Abs. Upward Mobility (MAcatM)					-0.420***
					(0.159)
Constant cut1	-1.704***	-1.630***	-1.541***	-1.810***	-1.873***
	(0.080)	(0.083)	(0.095)	(0.106)	(0.114)
Constant cut2	-1.139***	-1.064***	-0.975***	-1.244***	-1.308***
	(0.065)	(0.068)	(0.079)	(0.103)	(0.113)
Constant cut3	-0.571***	-0.497***	-0.408***	-0.677***	-0.740***
	(0.053)	(0.064)	(0.073)	(0.107)	(0.119)
Constant cut4	-0.141***	-0.066	0.023	-0.246**	-0.309**
	(0.050)	(0.066)	(0.074)	(0.110)	(0.122)
Constant cut5	0.509***	0.585***	0.673***	0.405***	0.341***
	(0.052)	(0.074)	(0.083)	(0.113)	(0.125)
Constant cut6	0.884***	0.960***	1.049***	0.780***	0.717***
	(0.053)	(0.079)	(0.090)	(0.114)	(0.126)
Constant cut7	1.382***	1.458***	1.547***	1.278***	1.215***
	(0.059)	(0.092)	(0.102)	(0.124)	(0.135)
Constant cut8	2.111***	2.187***	2.276***	2.007***	1.944***
	(0.085)	(0.120)	(0.125)	(0.150)	(0.159)
Constant cut9	2.653***	2.730***	2.819***	2.550***	2.487***
	(0.105)	(0.135)	(0.140)	(0.162)	(0.171)
Observations	32,425	32,425	32,425	32,425	32,425
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES
Country I'E	ILO	113	113	1150	11.0

Notes: This table presents the ordered logit regression results corresponding to Table A.5 in the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. P and E denote the education levels of the parent and subject, respectively. 1 (baseline, thus omitted to avoid multicollinearity) denotes lower, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.

Table 10: Ordered Probit Regression Results without Intergenerational Mobility Controls

	(1)	(2)	(3)	(4)	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
P=2	0.036**	0.038**	0.037**	0.033**	0.033**
1 – 2	(0.016)	(0.017)	(0.017)	(0.016)	(0.016)
P = 3	0.066**	0.068**	0.066**	0.063**	0.063**
1 - 3	(0.031)	(0.031)	(0.031)	(0.031)	(0.031)
E = 2	0.059**	0.056**	0.060**	0.064***	0.064***
L - L	(0.024)	(0.024)	(0.023)	(0.023)	(0.023)
E = 3	0.146***	0.146***	0.149***	0.155***	0.156***
L = 3	(0.030)	(0.030)	(0.029)	(0.029)	(0.029)
log(Income)	0.066***	0.065***	0.064***	0.064***	0.064***
log(meome)	(0.024)	(0.024)	(0.024)	(0.024)	(0.024)
Intergenerational Persistence (IGP)	(0.024)	(0.024)	0.128**	(0.024)	(0.024)
intergenerational refsistence (191)			(0.064)		
Cond. Abs. Upward Mobility (MAcatC1)			(0.004)	-0.226***	
Cond. 703. Opward Wobinty (Incator)				(0.085)	
Abs. Upward Mobility (MAcatM)				(0.003)	-0.274***
ribb. opward Mobility (infoduli)					(0.091)
Constant cut1	-1.002***	-0.961***	-0.906***	-1.078***	-1.119***
constant catt	(0.047)	(0.049)	(0.055)	(0.064)	(0.068)
Constant cut2	-0.687***	-0.646***	-0.590***	-0.763***	-0.804***
	(0.039)	(0.041)	(0.047)	(0.062)	(0.067)
Constant cut3	-0.354***	-0.313***	-0.258***	-0.430***	-0.471***
	(0.033)	(0.039)	(0.044)	(0.063)	(0.070)
Constant cut4	-0.095***	-0.054	0.002	-0.170***	-0.211***
	(0.030)	(0.039)	(0.044)	(0.064)	(0.071)
Constant cut5	0.301***	0.343***	0.398***	0.226***	0.185**
	(0.031)	(0.044)	(0.049)	(0.066)	(0.072)
Constant cut6	0.529***	0.570***	0.626***	0.454***	0.412***
	(0.031)	(0.046)	(0.053)	(0.066)	(0.073)
Constant cut7	0.825***	0.866***	0.922***	0.750***	0.709***
	(0.033)	(0.053)	(0.058)	(0.071)	(0.077)
Constant cut8	1.242***	1.283***	1.339***	1.167***	1.126***
	(0.046)	(0.066)	(0.068)	(0.084)	(0.089)
Constant cut9	1.536***	1.578***	1.634***	1.462***	1.421***
	(0.054)	(0.071)	(0.073)	(0.089)	(0.094)
Observations	32,425	32,425	32,425	32,425	32,425
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES

Notes: This table presents the ordered probit regression results corresponding to Table A.5 in the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. P and P denote the education levels of the parent and subject, respectively. 1 (baseline, thus omitted to avoid multicollinearity) denotes lower, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MacatM, and MacatC1 are P denotes measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the P denotes measures are from the P denotes the P denotes measures are from the P denotes the P denotes measures are from the P denotes the P denotes measures are from the P denotes measures a

2 Alternative Regression Specifications

Table 11: Regression Results with Controls for the Respondent's Own Upward Mobility and Persistence

Preference for Redistri	bution (v	198)			
VARIABLES	(1) Model 1	(2) Model 2	(3) Model 3	(4) Model 4	(5) Model 5
Respondent's Upward Mobility	-0.064 (0.073)	-0.059 (0.075)	-0.058 (0.075)	-0.048 (0.076)	-0.047 (0.076)
Respondent's Persistence	-0.157*	-0.137	-0.137	-0.137	-0.137
$E=2\mid P=1$	(0.081) 0.134** (0.065)	(0.084) 0.079 (0.062)	(0.084) 0.080 (0.062)	(0.084) 0.076 (0.062)	(0.084) 0.076 (0.062)
$E=3\mid P=1$	0.423*** (0.108)	0.199* (0.102)	0.200* (0.102)	0.197* (0.102)	0.197* (0.102)
$E = 2 \mid P = 2$	0.312*** (0.077)	0.227*** (0.079)	0.224*** (0.079)	0.220*** (0.078)	0.219*** (0.078)
$E=3\mid P=2$	0.470*** (0.096)	0.237** (0.091)	0.235** (0.091)	0.223** (0.090)	0.223** (0.090)
$E = 2 \mid P = 3$	0.257* (0.133)	0.146 (0.136)	0.145 (0.136)	0.141 (0.135)	0.141 (0.135)
$E=3\mid P=3$	0.655*** (0.117)	0.381*** (0.113)	0.380*** (0.113)	0.378*** (0.113)	0.379*** (0.113)
log(Income)	0.180*** (0.059)	0.128** (0.058)	0.125** (0.058)	0.123** (0.058)	0.123** (0.058)
Cohort Percentage $E = 2$	-0.034 (0.128)	-0.144 (0.129)	-0.082 (0.133)	-0.026 (0.132)	-0.028 (0.132)
Cohort Percentage $E = 3$	-0.162 (0.138)	-0.216 (0.149)	-0.166 (0.150)	-0.083 (0.154)	-0.067 (0.154)
Age	(0.130)	-0.002 (0.002)	-0.002 (0.002)	0.001 (0.002)	0.001 (0.002)
Male		0.134** (0.051)	0.142*** (0.050)	0.140*** (0.049)	0.141*** (0.048)
Employed		0.050 (0.047)	0.055 (0.047)	0.060 (0.047)	0.059 (0.047)
Large Employers, Higher Managers/Professionals		0.533*** (0.100)	0.534*** (0.099)	0.537*** (0.098)	0.537*** (0.098)
$Lower\ Managers/Professionals, Higher\ Supervisory/Technicians$		0.278*** (0.069)	0.278*** (0.069)	0.281*** (0.068)	0.283*** (0.068)
Intermediate Occupations		0.176** (0.075)	0.177** (0.074)	0.179** (0.074)	0.180** (0.074)
Small Employers and Self-Employed (Non-Agriculture)		0.468*** (0.111)	0.469*** (0.111)	0.472*** (0.110)	0.473*** (0.110)
Small Employers and Self-Employed (Agriculture)		-0.220 (0.152)	-0.222 (0.153)	-0.234 (0.151)	-0.233 (0.151)
Lower Supervisors and Technicians		0.308*** (0.085)	0.309*** (0.085)	0.312*** (0.083)	0.313*** (0.083)
Lower Sales and Service		-0.073 (0.060)	-0.071 (0.060)	-0.069 (0.059)	-0.067 (0.059)
Lower Technical		-0.085 (0.059)	-0.084 (0.059)	-0.080 (0.058)	-0.079 (0.058)
Intergenerational Persistence (IGP)			0.345** (0.161)		
Cond. Abs. Upward Mobility (MAcatC1)			(01)	-0.644*** (0.222)	
Abs. Upward Mobility (MAcatM)				(0.222)	-0.766*** (0.240)
Constant	4.934*** (0.115)	4.876*** (0.152)	4.675*** (0.168)	5.095*** (0.193)	5.202*** (0.206)
Observations p ²	32,425	32,318	32,318	32,318	32,318
R ² Demographic Controls Country FE	0.151 NO YES	0.156 YES YES	0.156 YES YES	0.156 YES YES	0.156 YES YES

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes: Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for preferences for redistribution (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. P and E denote the education levels of the parent and subject, respectively. 1 (baseline, thus omitted to avoid multicollinearity) denotes lower, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. Cohort Percentage E = X refers to the share of subjects with X level of education. Age is how old the subject is in integers. Male, Employed, Large Employers, Higher Managers/Professionals, Lower Managers/Professionals, Higher Supervisory/Technicians, Intermediate Occupations, Small Employers and Self-Employed (Non-Agriculture), Small Employers and Self-Employed (Agriculture), Lower Supervisors and Technicians, Lower Sales and Service, and Lower Technical are dummy variables that take the value 1 if the subject belongs to the category, and 0 otherwise. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.

Table 12: Regressions with the Interactions of Personal and Cohort-Wide Mobility *GDIM* Variables

Preference for Redistribution (v198) Variables Model 1 Model 2 Model 3 Model 4 E = 2 | P = 10.238 0.331 0.301 0.143** (0.063)(0.156)(0.203)(0.218)E = 3 | P = 11.223*** 0.427*** 0.547* 1.365** (0.252)(0.096)(0.286)(0.320)E = 2 | P = 20.244*** 0.273 0.412* 0.384 (0.256) (0.182)(0.233)(0.079)E = 3 | P = 20.466** 0.914*** 1.012*** 0.472*** (0.217)(0.282)(0.305)(0.086)E = 2 | P = 30.330** 0.217 0.722*0.757*(0.389)(0.324)(0.393)(0.133)E = 3 | P = 30.575* 0.885** 1.041** 0.572*** (0.287)(0.416)(0.490)(0.109)Intergenerational Persistence (IGP) 0.401 (0.290) $\{E=2\mid P=1\}\times \text{Intergenerational Persistence (IGP)}$ -0.183(0.319) $\{E=3 \mid P=1\} \times \text{Intergenerational Persistence (IGP)}$ -0.253 (0.520) $\{E=2\mid P=2\}\times \text{Intergenerational Persistence (IGP)}$ -0.040 (0.399) $\{E=3\mid P=2\}\times \text{Intergenerational Persistence (IGP)}$ 0.045 (0.492) ${E = 2 \mid P = 3} \times \text{Intergenerational Persistence (IGP)}$ 0.306 (0.861) $\{E=3\mid P=3\}\times \text{Intergenerational Persistence (IGP)}$ 0.025 (0.691)log(Income) 0.175*** 0.173*** 0.173*** 0.176*** (0.059)(0.059)(0.059)(0.059)Cond. Abs. Upward Mobility (MAcatC1) -0.245 (0.342) ${E = 2 \mid P = 1} \times \text{Cond. Abs. Upward Mobility (MAcatC1)}$ -0.262 (0.318) $\{E=3\mid P=1\}\times \text{Cond. Abs. Upward Mobility (MAcatC1)}$ -1.131** (0.436) $\{E=2\mid P=2\}\times \text{Cond. Abs. Upward Mobility (MAcatC1)}$ -0.232(0.390) ${E = 3 \mid P = 2} \times Cond.$ Abs. Upward Mobility (MAcatC1) -0.688 (0.457) ${E = 2 \mid P = 3} \times Cond.$ Abs. Upward Mobility (MAcatC1) -0.628 (0.574) $\{E=3\mid P=3\}\times \text{Cond. Abs. Upward Mobility (MAcatC1)}$ -0.474 (0.671)Abs. Upward Mobility (MAcatM) -0.351 (0.356) ${E = 2 \mid P = 1} \times Abs. Upward Mobility (MAcatM)$ -0.213 (0.338) $\{E=3\mid P=1\}\times \text{Abs. Upward Mobility (MAcatM)}$ -1.320*** (0.481) $\{E=2\mid P=2\}\times \text{Abs. Upward Mobility (MAcatM)}$ -0.181 (0.419) ${E = 3 \mid P = 2} \times Abs. Upward Mobility (MAcatM)$ -0.825* (0.481) ${E = 2 \mid P = 3} \times Abs. Upward Mobility (MAcatM)$ -0.671 (0.679) ${E = 3 \mid P = 3} \times Abs. Upward Mobility (MAcatM)$ -0.707 (0.769)4.534*** 4.789*** 4.883*** 4.714*** Constant (0.145)(0.202)(0.217)(0.096)Observations 32,425 32,425 32,425 32,425

Notes: Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is *preferences for redistribution* (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. $E = X|P = Y \times GDIM$ variables are interaction dummy variables that take the value 1 if the interaction applies to the subject and 0 otherwise. All variables except the GDIM-based measures are from the EVS 2008 wave.

Demographic Controls

Country FE

0.152

YES

YES

0.152

YES

YES

0.152

YES

YES

0.152

YES

YES

Table 13: Regressions with Granularly Defined Educational Attainment Variables

Preference for Redistribution (v198) Variables Model 5 E = 1 | P = 0-0.011 -0.007 -0.025 -0.022-0.013 (0.187)(0.188)(0.189)(0.190)(0.190)E = 2 | P = 00.052 0.038 0.057 0.092 0.096 (0.223) (0.223) (0.222) E = 3 | P = 00.086 (0.234) 0.085 (0.236) 0.056 (0.232)(0.237)(0.238)E = 4 | P = 0-0.428 -0.435 -0.403 -0.360 -0.356 (0.403)(0.400)(0.404)(0.397)(0.395)E = 5 | P = 00.467 0.442 0.472* 0.521* 0.527* (0.282) (0.277) (0.276) (0.275) -0.070 (0.724) -0.121 (0.743) -0.100 (0.734) -0.057 (0.738) -0.058 (0.738) $E=6\mid P=0$ $E=0\mid P=1$ 0.241 0.242 0.250 0.259 (0.265)(0.273)(0.272)(0.275)(0.275)E = 1 | P = 10.009 0.004 0.017 0.033 0.035 (0.250) (0.247) (0.248) (0.248)(0.248) E = 2 | P = 10.240 (0.229) 0.301 (0.231) 0.252 0.262 0.303 (0.231) (0.231) (0.232) $E=3\mid P=1$ 0.376 (0.234) (0.237)(0.234)(0.234)(0.234)E = 4 | P = 10.276 0.269 0.303 0.347 0.349 (0.268)(0.267)(0.266)(0.265)(0.266)E = 5 | P = 10.598** 0.589* 0.619** 0.662** 0.666** (0.259)(0.258)(0.261) (0.259)(0.260) $E=6\mid P=1$ 0.832*** 0.807** 0.838*** (0.275) 0.875*** 0.878*** (0.273) (0.274) (0.278) (0.277) $E=0 \mid P=2$ -1.077 -1.052 -1.038 -1.095 -1.055 (0.866)(0.859)(0.856)(0.851)(0.852)E = 1 | P = 20.392 0.387 0.398 0.418 0.419 (0.364) (0.365) (0.363) (0.366) (0.366) E = 2 | P = 20.139 0.134 0.158 0.183 0.182 (0.234) E = 3 | P = 20.271 (0.222) 0.255 (0.218) 0.287 (0.219) 0.316 (0.218) 0.317 (0.219) E = 4 | P = 20.721*** 0.690** 0.689* 0.756** 0.756*** (0.256)(0.255)(0.255)(0.254)(0.255)E = 5 | P = 20.574** 0.568* 0.598** 0.636** 0.638** (0.240) (0.237) (0.239) (0.238) (0.238) E = 6 | P = 20.571 (0.503) 0.539 (0.508) 0.568 (0.510) 0.595 (0.509) 0.597 (0.509) E = 0 | P = 3-0.670 -0.673 -0.639 -0.608 -0.608 (0.612)(0.602)(0.608)(0.605)(0.607)E = 1 | P = 30.270 0.276 0.288 0.312 0.312 (0.533) (0.524) (0.527) (0.523) (0.523) E = 2 | P = 30.393 (0.273) 0.414 (0.276) 0.434 (0.275) 0.393 0.436 (0.272) $E=3 \mid P=3$ 0.420* (0.236)(0.237)(0.240)(0.238)(0.239)E = 4 | P = 30.637** 0.576** 0.608** 0.636** 0.580* (0.249)(0.246)(0.247)(0.247)(0.248)E = 5 | P = 30.632** 0.631** 0.658** 0.691*** 0.694*** (0.255) (0.252) (0.253) (0.253) (0.254) E = 6 | P = 30.546 0.521 (0.390) 0.553 0.592 0.594 (0.390) (0.391) (0.390) -0.899*** (0.209) $E=0\mid P=4$ -1.006*** -0.940** -0.863*** -0.874*** (0.206)(0.208)(0.209)(0.210)E = 1 | P = 4-0.927 -0.943-0.913 -0.866 -0.862 (1.252) (1.281)(1.293)(1.294)(1.295) E = 2 | P = 40.570 0.545 0.566 0.584 0.585 (0.388) (0.385) (0.386) (0.385) 0.299 (0.252) 0.293 (0.248) 0.318 (0.250) 0.344 (0.251) 0.345 (0.252) $E=3\mid P=4$ $E=4 \mid P=4$ 0.470* 0.492* 0.517* 0.468 0.518 (0.263)(0.257)(0.260)(0.260)(0.261)E = 5 | P = 40.638** 0.657** 0.683** 0.636* 0.686** (0.265)(0.260) (0.264)(0.264)(0.264)E = 6 | P = 41.069* (0.579) 1.035* (0.563) 1.056* (0.564) 1.081* (0.562) 1.085* (0.562) E = 0 | P = 51.306 1.331 (1.261)(1.251)(1.236)(1.241)(1.240)E = 1 | P = 50.523 0.517 0.517 0.523 0.524 (0.725)(0.709)(0.698)(0.705)(0.705)E = 2 | P = 50.170 0.163 0.180 0.202 0.203 (0.363) (0.364) (0.364)(0.366) (0.366) 0.558* (0.278) 0.547* (0.274) 0.573** (0.277) 0.596** (0.277) 0.597** (0.278) $E=3\mid P=5$ E = 4 | P = 50.216 0.194 0.189 0.242 0.243 (0.340)(0.339)(0.340)(0.341) (0.341)E = 5 | P = 50.713*** 0.714** 0.739*** 0.771*** 0.774*** (0.254)(0.251) (0.254)(0.254)(0.254)E = 6 | P = 51.090***
(0.288) 1.071** 1.097** 1.134*** 1.137*** (0.284) (0.285) (0.287) (0.287) E = 2 | P = 6-0.111 (0.231) -0.221 (0.233) -0.240 (0.238) (0.234)(0.235)E = 3 | P = 60.920* 0.906 0.940* 0.977* 0.980

	(0.521)	(0.519)	(0.526)	(0.531)	(0.531)
$E = 4 \mid P = 6$	0.189 (0.354)	0.199 (0.377)	0.225 (0.381)	0.276 (0.402)	0.276 (0.406)
$E = 5 \mid P = 6$	0.706* (0.387)	0.696* (0.382)	0.722* (0.382)	0.752* (0.386)	0.754* (0.387)
$E = 6 \mid P = 6$	1.342** (0.630)	1.336** (0.628)	1.364** (0.626)	1.406** (0.622)	1.409** (0.622)
log(Income)	0.173*** (0.060)	0.169*** (0.060)	0.167*** (0.060)	0.166*** (0.060)	0.165*** (0.060)
Intergenerational Persistence (IGP)			0.375** (0.163)		
Cond. Abs. Upward Mobility (MAcatC1)				-0.635*** (0.212)	
Abs. Upward Mobility (MAcatM)					-0.755*** (0.232)
Constant	4.665*** (0.240)	4.546*** (0.232)	4.362*** (0.247)	4.825*** (0.269)	4.931*** (0.277)
Observations	32,425	32,425	32,425	32,425	32,425
R^2	0.153	0.153	0.153	0.154	0.154
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES

Notes: Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is *preferences for redistribution* (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 0 denotes pre-primary education, 1 denotes primary education, 2 denotes lower secondary education, 3 denotes upper secondary education, 4 denotes upper secondary (nontertiary) education, 5 denotes first stage of tertiary education, and 6 denotes second stage of tertiary education (leading to an advanced degree), based on ISCED 1997 classification. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are *GDIM*-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the *GDIM*-based measures are from the *EVS* 2008 wave.

Table 14: Regressions with Granularly Defined Educational Attainment Variables, Controls for the Respondent's Own Upward Mobility and Persistence, & Expanded Set of Demographic Variables

Preference for Redistribution (v198) (1) Model 1 VARIABLES Model 2 Model 3 Model 4 Respondent's Upward Mobility 0.285 0.285 0.291 0.292 (0.332) (0.330) (0.331) Respondent's Persistence -0.433 -0.445 -0.461 -0.460 (0.383)(0.386) $E=1\mid P=0$ -0.735*** -0.746*** (0.236) -0.759*** -0.757*** (0.235) (0.236) (0.236) $E=2\mid P=0$ -0.685*** (0.220) -0.686*** -0.673*** -0.670*** -0.706*** (0.235) $E=3\mid P=0$ -0.707*** -0.697*** -0.693*** (0.237) (0.236) $E=4\mid P=0$ -1.234*** -1.230*** -1.219*** -1.216*** (0.293)-0.492 (0.304) -0.490 (0.301) -0.476 (0.300) -0.473 (0.300) $E=5\mid P=0$ $E=6\mid P=0$ -1.229 (0.891) -1.233 (0.883) -1.225 (0.885) -1.228 (0.886) $E=0\mid P=1$ -0.160 -0.176 (0.448) (0.445)(0.446)(0.449) $E=1\mid P=1$ 0.003 (0.248) 0.013 (0.250) 0.028 (0.249) $E=2\mid P=1$ -0.502** (0.242)(0.239)(0.239)(0.240) $E=3\mid P=1$ (0.234)(0.232)(0.231)(0.232) $E=4\mid P=1$ (0.318)(0.316)(0.314)(0.314) $E=5\mid P=1$ -0.339 (0.236)(0.234)(0.233)(0.233) $E=6\mid P=1$ -0.021 -0.015 -0.015 -0.015 (0.341)(0.341)(0.343)(0.343) $E=0\mid P=2$ -1.577 -1.565* -1.562 (0.913)(0.909)(0.904)(0.906)E = 1 | P = 2-0.039 -0.044 -0.042 -0.040 (0.421)(0.420)(0.425)(0.425)E = 2 | P = 20.101 0.118 0.139 0.138 (0.238)(0.240)(0.240)(0.241)E = 3 | P = 2-0.520** -0.516* -0.519** -0.519** (0.231)(0.228)(0.229)(0.230)E = 4 | P = 2-0.142 -0.139 -0.137 -0.137 (0.259)(0.256)(0.257)(0.258)E = 5 | P = 2-0.377 -0.375 -0.374 -0.374 (0.237)(0.235)(0.236)(0.236) E = 6 | P = 2-0.469 -0.467 -0.479 -0.479 (0.492)(0.494) (0.494)(0.493) E = 0 | P = 3-1.105** -1.118** -1.093** -1.094** (0.524)(0.526)(0.525)(0.526)E = 1 | P = 3-0.187 -0.183-0.181 -0.181 (0.503)(0.503)(0.502)(0.502) $E=2\mid P=3$ -0.092 -0.091 -0.090 -0.088 (0.314) (0.312)(0.313) (0.313)E = 3 | P = 30.301 0.311 0.325 0.325 (0.240)(0.241)(0.242)(0.243)E = 4 | P = 3-0.268 -0.267 -0.271 -0.273 (0.238) (0.237) (0.238) (0.238) E = 5 | P = 3-0.313 -0.313 -0.317 -0.316 (0.238) (0.240) E = 6 | P = 3-0.497 -0 493 -0 493 -0 494 (0.427) (0.425) (0.425) (0.424) E = 0 | P = 4-1.460*** -1.432*** -1.409*** -1.420*** (0.365) (0.362) $E=1\mid P=4$ -1.415 (1.358) -1.371 (1.357) -1.367 (1.363) (1.359) $E=2\mid P=4$ 0.023 0.026 0.028 0.030 (0.494) (0.494) (0.495) (0.494) -0.193 (0.302) -0.194 (0.304) E = 3 | P = 4-0.190 -0.192 (0.304) (0.304) 0.321 (0.266) 0.330 (0.267) 0.343 (0.269) 0.344 (0.269) $E=4 \mid P=4$ -0.329 (0.238) -0.333 (0.237) $E=5\mid P=4$ -0.344 (0.237) (0.237) $E=6\mid P=4$ 0.032 (0.482) 0.027 (0.482) 0.011 (0.484) 0.014 (0.483)

$E=0\mid P=5$	0.870	0.864	0.841	0.838
	(1.302)	(1.290)	(1.297)	(1.296)
$E=1\mid P=5$	0.072	0.061	0.053	0.054
	(0.725)	(0.715)	(0.717)	(0.717)
$E=2\mid P=5$	-0.348	-0.349	-0.346	-0.345
	(0.409)	(0.406)	(0.408)	(0.408)
$E=3\mid P=5$	0.001	0.000	-0.003	-0.002
	(0.294)	(0.293)	(0.295)	(0.295)
$E=4\mid P=5$	-0.396	-0.396	-0.396	-0.394
	(0.332)	(0.331)	(0.332)	(0.332)
$E = 5 \mid P = 5$	0.459*	0.470*	0.488*	0.488*
	(0.260)	(0.262)	(0.262)	(0.262)
$E=2\mid P=6$	-0.587*	-0.619**	-0.578*	-0.564*
	(0.299)	(0.294)	(0.297)	(0.294)
$E=3\mid P=6$	0.341	0.348	0.362	0.366
	(0.574)	(0.577)	(0.581)	(0.581)
$E=4\mid P=6$	-0.412	-0.416	-0.388	-0.388
	(0.419)	(0.420)	(0.438)	(0.441)
$E=6\mid P=6$	0.995	1.008	1.035	1.036
	(0.644)	(0.643)	(0.640)	(0.639)
log(Income)	0.124**	0.122**	0.119**	0.119**
	(0.058)	(0.058)	(0.058)	(0.058)
Cohort Percentage $E=2$	-0.167	-0.103	-0.048	-0.051
	(0.130)	(0.134)	(0.133)	(0.134)
Cohort Percentage $E=3$	-0.234	-0.183	-0.098	-0.084
	(0.151)	(0.152)	(0.156)	(0.156)
Age	-0.001	-0.001	0.002	0.001
	(0.002)	(0.002)	(0.002)	(0.002)
Male	0.136**	0.145***	0.142***	0.144***
	(0.051)	(0.050)	(0.048)	(0.048)
Employed	0.049	0.054	0.059	0.058
	(0.047)	(0.047)	(0.047)	(0.047)
Large Employers, Higher Managers/Professionals	0.524***	0.524***	0.527***	0.528***
	(0.100)	(0.099)	(0.098)	(0.098)
Lower Managers/Professionals, Higher Supervisory/Technicians	0.273***	0.273***	0.276***	0.277***
	(0.069)	(0.069)	(0.068)	(0.068)
Intermediate Occupations	0.166**	0.167**	0.168**	0.169**
	(0.074)	(0.074)	(0.073)	(0.073)
Small Employers and Self-Employed (Non-Agriculture)	0.460***	0.461***	0.464***	0.464***
	(0.111)	(0.111)	(0.110)	(0.110)
Small Employers and Self-Employed (Agriculture)	-0.196	-0.197	-0.207	-0.207
	(0.154)	(0.155)	(0.154)	(0.154)
Lower Supervisors and Technicians	0.305***	0.306***	0.309***	0.309***
	(0.085)	(0.084)	(0.084)	(0.083)
Lower Sales and Service	-0.075	-0.074	-0.072	-0.070
	(0.061)	(0.061)	(0.060)	(0.060)
Lower Technical	-0.083	-0.082	-0.079	-0.078
	(0.060)	(0.060)	(0.059)	(0.059)
Intergenerational Persistence (IGP)		0.361** (0.161)		
Cond. Abs. Upward Mobility (MAcatC1)			-0.673*** (0.217)	
Abs. Upward Mobility (MAcatM)				-0.791*** (0.238)
Constant	5.100***	4.891***	5.329***	5.434***
	(0.320)	(0.319)	(0.346)	(0.359)
Observations R^2	32,318	32,318	32,318	32,318
	0.157	0.157	0.157	0.158
Demographic Controls	YES	YES	YES	YES
Country FE	YES	YES	YES	YES

Notes: Statistical significance is denoted by asterisks (**** p < 0.01, *** p < 0.05, ** p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is *preferences for redistribution* (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 0 denotes pre-primary education, 1 denotes primary education, 2 denotes lower secondary education, 3 denotes upper secondary education, 4 denotes upper secondary (nontertiary) education, 5 denotes first stage of tertiary education, and 6 denotes second stage of tertiary education (leading to an advanced degree), based on ISCED 1997 classification. log(Income) is the natural logarithm of PPP-adjusted household income in euros. Age is how old the subject is in integers. Male, Employed, Large Employers, Higher Managers/Professionals, Lower Managers/Professionals, Higher Supervisory/Technicians, Intermediate Occupations, Small Employers and Self-Employed (Non-Agriculture), Small Employers and Self-Employed (Agriculture), Lower Supervisors and Technicians, Lower Sales and Service, and Lower Technical are dummy variables that take the value 1 if the subject belongs to the category, and 0 otherwise. IGP, MAcatM, and MAcatC1 are *GDIM*-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the *GDIM*-based measures are from the *EVS* 2008 wave.

Table 15: Regression where Immobile Intergenerational Profiles are Excluded

Preference for Redistribution (v198) (5) VARIABLES Model 5 Model 1 Model 2 Model 3 Model 4 E = 2 | P = 1-0.051 -0.047 -0.044 -0.039 -0.038 (0.048)(0.049)(0.048)(0.048)(0.048)E = 3 | P = 10.208** 0.215** 0.219*** 0.226*** 0.226*** (0.080)(0.081)(0.081)(0.080)(0.080)E = 1 | P = 20.026 0.016 0.018 0.016 0.016 (0.138)(0.138)(0.138)(0.137)(0.137) $E=3\mid P=2$ 0.228*** 0.229*** 0.231*** 0.230*** 0.231*** (0.063)(0.064)(0.064)(0.063)(0.063)E = 1 | P = 3-0.093 -0.105 -0.107 -0.108 -0.108 (0.261)(0.264)(0.262)(0.265)(0.265)E = 2 | P = 30.103 0.099 0.099 0.096 0.096 (0.119)(0.119)(0.119)(0.119)(0.119)0.213*** 0.222*** 0.216*** 0.215*** 0.214*** log(Income) (0.059)(0.060)(0.060)(0.059)(0.059)Intergenerational Persistence (IGP) 0.323* (0.169)Cohort Percentage E = 20.191 0.066 0.125 0.170 0.169 (0.132)(0.140)(0.141)(0.140)(0.141)Cohort Percentage E = 30.172 0.094 0.1410.211 0.227 (0.133)(0.154)(0.155)(0.158)(0.157)Cond. Abs. Upward Mobility (MAcatC1) -0.573** (0.222)-0.694*** Abs. Upward Mobility (MAcatM) (0.239)4.875*** 4.917*** 4.734*** 5.123*** 5.223*** Constant (0.101)(0.142)(0.164)(0.183)(0.197)Observations 32,425 32,425 32,425 32,425 32,425 0.149 0.150 0.150 0.150 0.150 Demographic Controls NO YES YES YES YES Country FE YES YES YES YES

Notes: Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is *preferences for redistribution* (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. Cohort Percentage E = X refers to the share of subjects with X level of education. The immobile intergenerational profiles refer to E = 1|P = 1, E = 2|P = 2, and E = 3|P = 3 specifically. All variables except the EVS 2008 wave.

3 Regression Results by Decade

Table 16: Regression Results for those born in the 1940s

Preference for Redistribution (v198) in 1940

VARIABLES (1) (2) (3) (4) (5) VARIABLES Model 1 Model 2 Model 3 Model 4 Model 5 E = 2 P = 1 0.261*** 0.259*** 0.262*** 0.257*** 0.258*** E = 3 P = 1 0.424**** 0.421*** 0.422*** 0.418*** 0.419*** E = 2 P = 2 0.287** 0.294** 0.295** 0.294** 0.294** E = 3 P = 2 0.287** 0.294** 0.295** 0.294** 0.294** E = 3 P = 2 0.400** 0.402** 0.405** 0.399** 0.400** E = 2 P = 3 0.412 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.427 0.337 0.037 0.337 0.037 0.337 0.037 0.320** 0.185 0.168 0.186 0.186 0.186 0.186 0.186 0.186 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 0.088 <th< th=""><th colspan="6">Preference for Redistribution (v198) in 1940</th></th<>	Preference for Redistribution (v198) in 1940					
$E = 2 \mid P = 1 \\ (0.102) (0.102) (0.103) (0.103) (0.103) \\ (0.103) (0.103) (0.103) (0.103) (0.103) \\ (0.1042) (0.102) (0.104) (0.104) (0.104) \\ (0.142) (0.142) (0.142) (0.142) (0.142) (0.142) \\ (0.142) (0.142) (0.142) (0.142) (0.142) (0.142) \\ E = 2 \mid P = 2 \\ (0.123) (0.123) (0.123) (0.123) (0.123) (0.123) \\ (0.123) (0.123) (0.123) (0.123) (0.123) (0.123) \\ E = 3 \mid P = 2 \\ (0.175) (0.174) (0.173) (0.174) (0.173) \\ (0.175) (0.174) (0.173) (0.174) (0.175) \\ E = 2 \mid P = 3 \\ (0.337) (0.337) (0.337) (0.337) (0.337) \\ E = 3 \mid P = 3 \\ (0.337) (0.337) (0.337) (0.337) (0.337) \\ (0.337) (0.337) (0.337) (0.337) (0.337) \\ (0.188) (0.188) (0.185) (0.186) (0.186) \\ (0.186) (0.186) (0.186) (0.186) \\ (0.086) (0.088) (0.088) (0.088) \\ (0.088) \\ Intergenerational Persistence (IGP) \\ Cond. Abs. Upward Mobility (MAcatC1) \\ Abs. Upward Mobility (MAcatM) \\ Constant \\ 4.170^{***} 3.276^{***} 3.125^{***} 3.176^{***} 3.183^{***} \\ (0.109) (0.805) (0.847) (0.908) (0.904) \\ Observations \\ R^2 0.162 0.162 0.162 0.162 0.162 \\ Demographic Controls \\ NO YES YES YES YES $		(1)	(2)	(3)	(4)	(5)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F-2\mid P-1$	0.261**	0.259**	0.262**	0.257**	0.258**
$E = 3 \mid P = 1 \\ (0.142) (0.142) (0.142) (0.142) (0.142) (0.142)$ $E = 2 \mid P = 2 \\ (0.123) (0.123) (0.123) (0.123) (0.123) (0.123)$ $E = 3 \mid P = 2 \\ (0.123) (0.123) (0.123) (0.123) (0.123) (0.123)$ $E = 3 \mid P = 2 \\ (0.175) (0.174) (0.173) (0.174) (0.175)$ $E = 2 \mid P = 3 \\ (0.337) (0.337) (0.337) (0.337) (0.337)$ $E = 3 \mid P = 3 \\ (0.337) (0.337) (0.337) (0.337) (0.337)$ $E = 3 \mid P = 3 \\ (0.188) (0.185) (0.185) (0.186) (0.186)$ $\log(\ln come) 0.167^* 0.163^* 0.162^* 0.163^* 0.163^*$ $\log(\ln come) 0.167^* 0.163^* 0.162^* 0.163^* 0.163^*$ $(0.088) (0.088) (0.088) (0.088)$ $Intergenerational Persistence (IGP) 0.163^* 0.162^* 0.163^* 0.163^*$ $Cond. Abs. Upward Mobility (MAcatC1) 0.163^* 0.162^* 0.163^*$ $Constant 4.170^{***} 3.276^{***} 3.125^{***} 3.176^{***} 3.183^{***}$ $(0.109) (0.805) (0.847) (0.908) (0.904)$ $Observations 5.839 5.839 5.839 5.839 5.839 5.839$ $R^2 0.162 0$	$L-L \mid I-I$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$E = 2 \mid P = 2 \\ (0.123) (0.123) (0.123) (0.123) (0.123) \\ (0.123) (0.123) (0.123) (0.123) (0.123) \\ (0.123) (0.123) (0.123) (0.123) (0.123) \\ (0.123) (0.123) (0.123) (0.123) (0.123) \\ (0.123) (0.123) (0.123) (0.123) (0.123) \\ (0.123) (0.123) (0.123) (0.123) (0.123) \\ (0.123) (0.123) (0.123) (0.123) (0.123) \\ (0.175) (0.174) (0.173) (0.175) \\ (0.175) (0.174) (0.173) (0.175) \\ (0.175) (0.174) (0.173) (0.175) \\ (0.0337) (0.337) (0.337) (0.337) (0.337) \\ (0.337) (0.337) (0.337) (0.337) (0.337) \\ (0.337) (0.337) (0.337) (0.337) (0.337) \\ (0.348) (0.186) (0.186) (0.186) (0.186) \\ (0.188) (0.188) (0.188) (0.188) (0.188) \\ (0.088) (0.088) (0.088) (0.088) (0.088) \\ (0.088) (0.088) (0.088) \\ (0.088) (0.088) (0.088) \\ (0.088) (0.088) (0.088) \\ (0.088) (0.088) \\ (0.088) (0.088) (0.088) \\ (0.088) (0.088)$	E = 3 P = 1					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.142)	(0.142)	(0.142)	(0.142)	(0.142)
	E = 2 P = 2	0.287**	0.294**	0.295**	0.294**	0.294**
$E = 2 \mid P = 3 \\ 0.412 \\ 0.427 \\ 0.427 \\ 0.427 \\ 0.337) \\ 0.0320^* \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0184) \\ 0.0184) \\ 0.0185) \\ 0.0185) \\ 0.0189$		(0.123)	(0.123)	(0.123)	(0.123)	(0.123)
$E = 2 \mid P = 3 \\ 0.412 \\ 0.427 \\ 0.427 \\ 0.427 \\ 0.337) \\ 0.0320^* \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0185) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0183) \\ 0.0184) \\ 0.0184) \\ 0.0185) \\ 0.0185) \\ 0.0189$	$F = 3 \mid P = 2$	0.400**	0.402**	0.405**	0 399**	0.400**
$E = 2 \mid P = 3 \\ (0.337) & 0.427 & 0.427 & 0.427 \\ (0.337) & (0.337) & (0.337) & (0.337) \\ (0.337) & (0.337) & (0.337) & (0.337) \\ (0.337) & 0.320^* & 0.321^* & 0.319^* & 0.319^* \\ (0.188) & (0.185) & (0.185) & (0.186) & (0.186) \\ (0.188) & (0.185) & (0.185) & (0.186) & (0.186) \\ (0.186) & (0.187) & 0.163^* & 0.162^* & 0.163^* & 0.163^* \\ (0.086) & (0.088) & (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.088) & (0.088) & (0.088) \\ (0.0$						
	E OLD O	, ,			, ,	
	E = 2 P = 3					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.337)	(0.337)	(0.337)	(0.337)	(0.337)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$E = 3 \mid P = 3$	0.307	0.320*	0.321*	0.319*	0.319*
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.188)	(0.185)	(0.185)	(0.186)	(0.186)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	log(Income)	0.167*	0.163*	0.162*	0.163*	0.163*
Intergenerational Persistence (IGP)	iog(income)					
Cond. Abs. Upward Mobility (MAcatC1)	T. (700)	(0.000)	(0.000)		(0.000)	(0.000)
Cond. Abs. Upward Mobility (MAcatC1) 0.189 (0.564) Abs. Upward Mobility (MAcatM) 0.175 (0.530) Constant 0.175 (0.530) Constant 0.175 (0.530) 0.175 (0.530) 0.189 (0.162) 0.162 (0.847) 0.189 (0.904) Observations 0.162 (0.162) 0	Intergenerational Persistence (IGP)					
Abs. Upward Mobility (MAcatM) $ \begin{array}{ccccccccccccccccccccccccccccccccccc$				(0.348)		
Abs. Upward Mobility (MAcatM)	Cond. Abs. Upward Mobility (MAcatC1)				0.189	
					(0.564)	
	Abs. Upward Mobility (MAcatM)					0.175
Constant 4.170^{***} 3.276^{***} 3.125^{***} 3.176^{***} 3.183^{***} (0.109) (0.805) (0.847) (0.908) (0.904) Observations $5,839$ $5,839$ $5,839$ $5,839$ $5,839$ R^2 0.162 0.162 0.162 0.162 0.162 Demographic Controls NO YES YES YES	cases of management, (cases and					
	Comptant	4 170***	2 270***	2 125***	2 170***	
Observations 5,839 5,839 5,839 5,839 5,839 R^2 0.162 0.162 0.162 0.162 0.162 0.162 Demographic Controls NO YES YES YES YES	Constant					
R^2 0.162 0.162 0.162 0.162 0.162 Demographic Controls NO YES YES YES YES		(0.109)	(0.805)	(U.847)	(0.908)	(0.904)
R^2 0.162 0.162 0.162 0.162 0.162 Demographic Controls NO YES YES YES YES						
Demographic Controls NO YES YES YES YES		,	,	,	,	
Country FE YES YES YES YES YES	0 1					
	Country FE	YES	YES	YES	YES	YES

Notes: This table presents the estimation results for the 1940s birth cohort, which correspond to those in Table 1 of the main text. Statistical significance is denoted by asterisks (*** p < 0.05, ** p < 0.05, ** p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatCl are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.

Table 17: Regression Results for those born in the 1950s

(1)	(2)	(3)	(4)	(5)
Model 1	Model 2	Model 3	Model 4	Model 5
				0.190*
, ,		, ,	, ,	(0.105)
				0.525*** (0.142)
		, ,	, ,	
				0.227* (0.134)
			. ,	0.571***
				(0.141)
				0.095
				(0.228)
				0.632***
(0.178)	(0.178)	(0.178)	(0.180)	(0.180)
0.211***	0.206***	0.201***	0.201***	0.201***
(0.062)	(0.062)	(0.063)	(0.063)	(0.063)
		1.480**		
		(0.670)		
			-1.968***	
			(0.620)	
				-1.956***
				(0.686)
4.809***	5.261***	4.622***	6.651***	6.658***
(0.095)	(0.601)	(0.672)	(0.763)	(0.782)
,				7,707
				0.158 YES
YES	YES	YES	YES	YES
	0.190* (0.107) 0.507*** (0.140) 0.234* (0.132) 0.561*** (0.140) 0.106 (0.224) 0.629*** (0.178) 0.211*** (0.062) 4.809*** (0.095) 7,707 0.156 NO	0.190* 0.172 (0.107) (0.107) 0.507*** 0.493*** (0.140) (0.133) 0.234* 0.213 (0.132) (0.133) 0.561*** 0.543*** (0.140) (0.140) 0.106 0.092 (0.224) (0.227) 0.629*** 0.613*** (0.178) (0.178) 0.211*** 0.206*** (0.062) (0.062) 4.809*** 5.261*** (0.095) (0.601) 7,707 7,707 0.156 0.157 NO YES	Model 1 Model 2 Model 3 0.190* (0.107) (0.106) 0.507**** (0.493**** (0.521**** (0.140) (0.137) 0.521**** (0.133) (0.134) 0.234* (0.213 (0.134) (0.134) 0.561**** (0.140) (0.139) 0.561*** (0.140) (0.140) (0.139) 0.106 (0.92) (0.229) 0.629*** (0.227) (0.229) 0.629*** (0.178) (0.178) 0.211*** (0.062) (0.063) 0.201*** (0.670) 0.211*** (0.062) (0.063) 1.480** (0.670) 4.809*** (0.601) (0.672) 4.622*** (0.670) (0.095) (0.601) (0.672) 7,707 0.156 (0.157) (0.158) NO YES YES	Model 1 Model 2 Model 3 Model 4 0.190* 0.172 0.187* 0.191* (0.107) (0.106) (0.105) 0.507*** 0.493*** 0.521*** 0.526*** (0.140) (0.140) (0.137) (0.142) 0.234* 0.213 0.227* 0.227* (0.132) (0.133) (0.134) (0.134) 0.561*** 0.543*** 0.561*** 0.571*** (0.140) (0.140) (0.139) (0.141) 0.106 0.092 0.103 0.094 (0.224) (0.227) (0.229) (0.228) (0.629*** 0.613*** 0.624*** 0.632*** (0.178) (0.178) (0.180) 0.211*** 0.206*** 0.201*** 0.201*** (0.062) (0.063) (0.063) (0.620) (0.670) (0.620) 4.809*** 5.261*** 4.622*** 6.651*** (0.095) (0.601) (0.672) (0.763)

Notes: This table presents the estimation results for the 1950s birth cohort, which correspond to those in Table 1 of the main text. Statistical significance is denoted by asterisks (**** p < 0.01, *** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (v198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.

Table 18: Regression Results for those born in the 1960s

Preference for Redistribution (v198) in 1960					
	(1)	(2)	(3)	(4)	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
$E=2 \mid P=1$	0.218**	0.201*	0.207**	0.215**	0.219**
$L-Z \mid I-I$	(0.099)	(0.100)	(0.099)	(0.100)	(0.100)
$E=3 \mid P=1$	0.617***	0.618***	0.627***	0.642***	0.647***
	(0.169)	(0.168)	(0.167)	(0.167)	(0.166)
E = 2 P = 2	0.335***	0.329***	0.332***	0.337***	0.338***
	(0.113)	(0.116)	(0.115)	(0.115)	(0.115)
$E=3 \mid P=2$	0.726***	0.732***	0.739***	0.749***	0.753***
$E = 3 \mid P = 2$					
	(0.132)	(0.133)	(0.134)	(0.133)	(0.132)
$E = 2 \mid P = 3$	0.564***	0.555***	0.559***	0.560***	0.562***
	(0.184)	(0.187)	(0.187)	(0.187)	(0.187)
$E = 3 \mid P = 3$	0.837***	0.839***	0.845***	0.854***	0.858***
E = 3 1 = 3	(0.163)	(0.162)	(0.161)	(0.162)	(0.162)
	, ,				
log(Income)	0.138*	0.135*	0.135*	0.131	0.130
	(0.079)	(0.079)	(0.079)	(0.078)	(0.078)
Intergenerational Persistence (IGP)			0.882		
•			(0.607)		
Cond. Abs. Upward Mobility (MAcatC1)				-1.636*	
Cond. Abs. Opward Wobinty (FACACCI)				(0.825)	
				(0.023)	
Abs. Upward Mobility (MAcatM)					-1.841**
					(0.813)
Constant	4.898***	4.322***	3.950***	5.428***	5.580***
	(0.098)	(0.454)	(0.509)	(0.735)	(0.725)
	(/	,	(,	(/	,
Observations	8,530	8,530	8,530	8,530	8,530
R^2	0.161	0.163	0.163	0.163	0.164
	0.161 NO	YES	YES	YES	YES
Demographic Controls		YES YES	YES YES	YES	YES
Country FE	YES	1123	1E5	1E5	1E3

Notes: This table presents the estimation results for the 1960s birth cohort, which correspond to those in Table 1 of the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.

Table 19: Regression Results for those born in the 1970s

Preference for F					
	(1)	(2)	(3)	(4)	(5)
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5
$E=2 \mid P=1$	0.088	0.079	0.082	0.089	0.090
	(0.097)	(0.098)	(0.099)	(0.099)	(0.099)
$E = 3 \mid P = 1$	0.158	0.164	0.171	0.195	0.196
	(0.154)	(0.158)	(0.159)	(0.156)	(0.155)
$E=2 \mid P=2$	0.189	0.182	0.183	0.188	0.188
	(0.144)	(0.147)	(0.147)	(0.147)	(0.147)
E OLD O					
$E = 3 \mid P = 2$	0.289**	0.293**	0.296**	0.306**	0.306**
	(0.122)	(0.125)	(0.126)	(0.126)	(0.125)
$E=2 \mid P=3$	0.237	0.225	0.230	0.229	0.229
	(0.186)	(0.186)	(0.186)	(0.186)	(0.186)
E = 3 P = 3	0.450***	0.453***	0.456***	0.467***	0.469***
	(0.162)	(0.162)	(0.164)	(0.163)	(0.163)
log(Income)	0.240***	0.234***	0.233***	0.230***	0.230***
	(0.073)	(0.072)	(0.072)	(0.072)	(0.072)
Intergenerational Persistence (IGP)			0.743		
intergenerational refusionee (1917)			(0.774)		
Cond. Also Harris Mark The Office (CA)			(01111)	1 000***	
Cond. Abs. Upward Mobility (MAcatC1)				-1.696***	
				(0.576)	
Abs. Upward Mobility (MAcatM)					-1.662***
					(0.586)
Constant	5.028***	4.662***	4.280***	5.748***	5.731***
	(0.084)	(0.528)	(0.640)	(0.609)	(0.610)
Observations	7,860	7,860	7,860	7,860	7,860
R^2	0.157	0.158	0.158	0.159	0.159
Demographic Controls	NO	YES	YES	YES	YES
Country FE	YES	YES	YES	YES	YES
· · · · · · · · · · · · · · · · · · ·					

Notes: This table presents the estimation results for the 1970s birth cohort, which correspond to those in Table 1 of the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X|P = Y represents the dummy variable for respondents whose own educational attainment is X and whose father's educational attainment is Y, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MAcatM, and MAcatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.

Table 20: Regression Results for those born in the 1980s

Preference for F	Preference for Redistribution (v198) in 1980					
	(1)	(2)	(3)	(4)	(5)	
VARIABLES	Model 1	Model 2	Model 3	Model 4	Model 5	
E = 2 P = 1	-0.155	-0.170	-0.162	-0.144	-0.140	
	(0.201)	(0.200)	(0.203)	(0.203)	(0.205)	
$E = 3 \mid P = 1$	0.309	0.318	0.320	0.358	0.366	
	(0.337)	(0.330)	(0.331)	(0.333)	(0.335)	
$E=2 \mid P=2$	0.070	0.052	0.056	0.065	0.072	
	(0.207)	(0.208)	(0.211)	(0.209)	(0.210)	
$E=3 \mid P=2$	0.195	0.184	0.194	0.208	0.214	
$E = 3 \mid P = 2$	(0.240)	(0.239)	(0.241)	(0.238)	(0.239)	
	, ,		, ,	, ,		
$E = 2 \mid P = 3$	0.305	0.284	0.297	0.303	0.306	
	(0.283)	(0.280)	(0.280)	(0.277)	(0.277)	
E = 3 P = 3	0.300	0.287	0.293	0.322	0.328	
	(0.238)	(0.237)	(0.237)	(0.235)	(0.235)	
log(Income)	0.043	0.043	0.041	0.040	0.038	
-	(0.091)	(0.091)	(0.091)	(0.092)	(0.092)	
Intergenerational Persistence (IGP)			0.992			
			(0.678)			
Cond. Abs. Upward Mobility (MAcatC1)				-1.923***		
Cond. 7103. Opward Woodinty (Incator)				(0.673)		
Abs. Upward Mobility (MAcatM)				(0.0.0)	-2.130***	
Abs. Opward Mobility (Macach)					(0.691)	
Constant	4.858***	7.344***	6.975***	8.739***	9.063***	
	(0.149)	(1.414)	(1.433)	(1.626)	(1.633)	
	0.400	0.400	0.400	0.400	0.400	
Observations R^2	2,489	2,489	2,489	2,489	2,489	
R- Demographic Controls	0.133 NO	0.134 YES	0.135 YES	0.136 YES	0.136 YES	
Country FE	YES	YES	YES	YES	YES	
Country I'E	113	113	113	1123	113	

Notes: This table presents the estimation results for the 1980s birth cohort, which correspond to those in Table 1 of the main text. Statistical significance is denoted by asterisks (*** p < 0.01, ** p < 0.05, * p < 0.1). Heteroskedasticity-robust standard errors are reported in parentheses. The dependent variable is preferences for redistribution (198), measured on a 10-point scale where lower values indicate greater support for redistribution. The rows list the independent variables. The coefficient for E = X | P = Y represents the dummy variable for respondents whose own educational attainment is X, where 1 denotes lower education, 2 denotes middle education, and 3 denotes upper education. log(Income) is the natural logarithm of PPP-adjusted household income in euros. IGP, MACatM, and MACatC1 are GDIM-based measures of intergenerational persistence, absolute upward mobility, and conditional absolute upward mobility, respectively. All variables except the GDIM-based measures are from the EVS 2008 wave.