Optimal shape design of thin-walled tubes under high-velocity axial impact loads

Niyazi Tanlak, Fazil O. Sonmez*

Department of Mechanical Engineering, Bogazici University, Istanbul, Bebek 34342, Turkey

ARTICLE INFO

Article history:
Received 2 October 2013
Received in revised form 7 July 2014
Accepted 7 July 2014

Keywords:
Thin-walled tubes
Crash-box
Crashworthiness
Explicit finite element analysis
Parametric system identification
Global optimization

ABSTRACT

In this study, the objective is to maximize the crashworthiness of thin-walled tubes under axial impact loads by shape optimization. As design variables, parameters defining the cross-sectional profile of the tube as well as parameters defining the longitudinal profile like the depths and lengths of the circumferential ribs and the taper angle are used. The methodology is applied to the design optimization of a crash-box supporting the bumper beam of a vehicle for the loading conditions in standard EuroNCAP crash tests. The crash event is simulated using explicit finite element method. While the crash-box is fully modeled, the structural response of the remaining parts during the tests is taken into account by developing a lumped-parameter model. A hybrid search algorithm combining Genetic and Nelder & Mead algorithms is developed. The results indicate significant improvement in the crashworthiness over the benchmarks designs.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled tubular structures are preferred in applications requiring high performance under impact loadings. In automobiles, thin-walled tubular parts are used to absorb impact energy in a potential crash. These parts should be designed to minimize the damage to the main parts of the vehicle and protect the occupants from injury by absorbing the collision energy. Their effectiveness in preventing injury under such impact loads is called crashworthiness. The performance of these parts can be significantly improved by optimizing their shapes.

There are a number of studies in the literature on the optimization of tubes made of metals (usually steel and aluminum) under axial impact loading. In these studies, tubes are considered as either empty [1–14] or filled [12,15–23]. Yamazaki and Han [1] studied square and cylindrical tubes hitting a rigid wall with a velocity of 10 m/s. They maximized the total energy absorption while maintaining the mean crushing force at a certain limit by varying the thickness of the tube and the section radius. Lee et al. [2] studied tubes with circular cross-section hitting a rigid wall with a velocity of 10 m/s and additional mass of 500 times the mass of the tube. Their design parameters were the wall thickness, radius, and length of the tube. Sheriff et al. [3] used the bottom diameter, height, and taper angle as design variables to maximize the total energy absorbed in circular cross-section tubes. Avalle and Chiaandussi [4] optimized cylindrical tubes with tapered tip for uniform reaction force distribution. They varied the length of the tapered tip and the tip diameter. Hou et al. [5,6] optimized square and hexagonal single-cell and multi-cell tubes using base dimensions and thickness as design variables for minimum peak force and maximum specific energy absorption, i.e. energy absorption per unit mass. Acar et al. [8] varied taper angle and number of ribs on the surface in order to maximize the ratio of the mean crush force to the peak force and the specific energy absorption. Qi et al. [9] analyzed single and multi-cell square tubes under oblique impact. Their objective was to increase the specific energy absorption and minimize the peak crushing force by changing the taper angle and the wall thickness. Liu [10] optimized the wall thickness and the side length of a box-shaped column to maximize the specific energy absorption with a constraint on the peak force. Liu [11] considered straight and curved octagonal and hexagonal tubes and selected the side length and the wall thickness as variables. The objective was to maximize specific energy absorption of the columns while constraining the peak force. Yang and Qi [12] studied empty and filled tubes with a square cross-section under axial or oblique impact. Their objective was to increase the specific energy absorption and minimize the peak crushing force by varying the wall thickness, cross-section width, material yield strength, and filler material density. Zarei and Kröger [13] optimized empty cylindrical tubes by taking their length, diameter, and thickness as design variables for increased total energy and specific energy absorption. They extended that study to tubes filled with honeycomb [16] and foam [17] by considering their densities as variables. Kim and Arora [14] studied representation.
of tapered tubes with uniform ones with square-sections in
the force–displacement domain. With these force representations, a
model with a single degree of freedom that simplified the analysis
of the tube structure was identified. Santosa and Wierzbicki [15]
studied the axial crushing resistance of a square-box column filled
with aluminum honeycomb or foam under quasi-static loading
conditions. Sun et al. [20] optimized crash-boxes with functionally
graded foams for maximum specific energy absorption and mini-
imum peak force. They assumed the foam material as layered and
they varied the density of these layers. Hansen et al. [18] used
formulas derived based on experimental data relating design
parameters to average force, maximum force, and stroke efficiency
in order to obtain optimum designs of columns for minimum
reaction force and maximum energy absorption. Ahmad and
Thambiratnam [19] conducted a parametric study on empty and
foam-filled tubes under axial impact loads using the wall thick-
ness, taper angle, foam density, impact mass, and impact velocity
as variables. Yin et al. [21] studied honeycomb-filled single and
bitubular polygonal tubes. The variables were the wall thickness
and the side length. The objective was to maximize the specific
energy absorption and to minimize the peak force. Bi et al. [22]
studied foam-filled single and multi-cell hexagonal tubes, which
were crushed under a rigid wall moving downward with a velocity
of 2 m/s and penetration depth of 100 mm. The variables were
chosen to be the wall thickness and the side length of the section,
and the foam density. The objective was to increase the specific
energy absorption while keeping the mean crushing force larger
than a certain limit to ensure a certain structural rigidity. Tarlo-
chan et al. [23] conducted a parametric study on foam filled tubes
under axial and oblique impact loading. They compared tubes
having circular, square, hexagonal, octagonal, elliptoidal cross-
sections with the same circumference in terms of energy absorp-
tion and crush force efficiency.

The previous researchers generally developed approximate expres-
sions for the objective functions using response surface methodology
[1–6,8–11,13,16,17,20–22], Kriging [12], moving least-squares approxi-
mentation [14], and artificial neural network [7]. After obtaining the
surrogate models, they used genetic algorithms [3,16,17], leap-frog [7],
particle swarm optimization [9,20,12,21], non-linear programming
[5,6,8], or multi-first order method [4] as search algorithms.

The cross-sectional shapes of the tubes considered by the
researchers were circular [1–4,8,13], square [1,5,7,9,10,12,16–20],
hexagonal [6,11,21–23], or octagonal [11,21]. Some of the previous
studies focused on straight columns with uniform cross-section
along the length [1,2,5–7,9–13,16–18,20–22], some of them intro-
duced taper angles [3,4,8,19], and some [8,7,16,17] introduced ribs
with predefined shapes.

In the present study, a larger number of geometric parameters are
used as optimization variables in comparison to the previous
studies. The parameters defining the shape of the cross-sectional
profile (the coordinates of key points defining the spline curves)
and the longitudinal profile (depths and widths of the circumfer-
ential ribs, and the taper angle), and the wall thickness are varied.
To the authors’ knowledge, the shapes of the ribs are optimized for
the first time in this study; in the previous studies, on the other
hand, they were taken as constant. The ribs can be inward or
outward. The taper angle can be positive or negative. Besides, the
loading conditions considered in almost all the previous studies
were either drop tests i.e. an object being dropped on a column, or
a column with a mass at the rear hitting a rigid wall. In this study,
the methodology developed for the optimum shape design of
tubular structures is applied to the crash-boxes (or brackets)
holding the bumper beam of a vehicle. The behavior of the
crash-box is simulated for the loading conditions in a standard
high-speed crash test, European New Car Assessment Program
(EuroNCAP). Because of the difficulty in modeling the whole car
and the resulting long computational times, a lumped-parameter
car model is developed that accounts for the structural behavior of
the main body of the vehicle as well as the parts in front of the
crash-box. Moreover, in this study, a hybrid of genetic algorithm
(GA) and Nelder–Mead algorithm is developed to find the globally
optimal design or a near global optimal design.

The goal of global design optimization is to find the design with
the best possible performance. This requires a definition of the
geometric design that allows significant changes in shape, i.e. the
solution domain should be large so that it includes the designs
leading to the highest possible levels of performance. This means
the number of geometric parameters and the range of values that
can be assigned to these parameters by the search algorithm
should be large. Global shape optimization of a vehicle for
maximum crashworthiness is infeasible considering the high
number of interacting parts, the high number of parameters used
to define their geometries, and complex interactions among them
during crash. This is beyond the capabilities of the current state-of
the-art computers and search algorithms. Considering the compu-
tational effort to simulate crashing of the whole vehicle, it is not
possible to find the globally optimum design within such a large
solution domain and with such a large number of design variables
even if a powerful global search algorithm is used. If large changes
are allowed in the values of the optimization variables during
optimization, the accuracy of surrogate models will also be
questionable even for a single part let alone the whole vehicle.
Besides, if the individual parts are separately optimized, loading
conditions on them will be different from that of a drop test. That
means the shape of a part optimized for the loading conditions in a
drop test will not be optimum for the loading conditions in a real
crash test.

The procedure suggested in this study to surmount these
problems is the following: individual parts of the vehicle are
optimized via a reliable global search algorithm by using a high
number of design variables and allowing large changes in the
values of these variables. The remaining parts of the vehicle are
modeled with a system of lumped masses, springs, and dampers
using parametric system identification, therefore computational
times will not be prohibitively long. At the last stage, the whole
vehicle is optimized starting from the optimized shapes of the
individual parts, but this time the ranges of values that can be
assigned to the variables will be small and some of the parameters
may be taken as constant. Then, it becomes feasible to develop a
reliable surrogate model for the vehicle and perform optimization.
In this study, modeling and design optimization of a single part, a
crash-box, is considered.

2. Problem statement

The main objective of this study is to develop a methodology to
obtain the optimum shape design of thin-walled tubes subjected
to high–velocity axial impact loads. The specific structure consid-
ered in this study is the bracket that supports the bumper beam of
a car. Two brackets hold the bumper beam at two sides. They are
in turn fixed to the main frame of the car. The types of obstacles
that bumper-beam-crash-box system endures during frontal
impact are countless. However, they can be categorized into three
major divisions: full frontal collision, offset frontal collision, and
pole frontal collision. The harshest collision that a bracket endures
is the offset frontal impact, where one of the brackets takes the
impact energy. Accordingly, the crash-box is optimized for offset
collision conditions in accordance with EuroNCAP, IIHS, ANCAP
standard tests, where the vehicle hits a wall with 40% offset and
64 km/h speed (See Fig. 1). At such high speeds, a car incurs
substantial damage, but it is crucial that the occupants do not
suffer serious injury. Crashworthiness of the vehicle depends on the transferred impact force and the capacity of the structural parts to absorb the collision energy. The crash-box is one of the parts that should be optimally designed in order to achieve the required crashworthiness of the vehicle.

3. Approach

3.1. The objective function

The effectiveness of design optimization depends on the proper choice of the objective function. Improving its value should enhance the structural performance of the part in the most effective way. The following objective function is chosen to be maximized in the present study:

\[
F_{\text{obj}} = \frac{w_1}{n_1} \rho V \int_0^T \int_0^L (\sigma_{ij} v_i v_j) \; dt - \frac{w_2}{n_2} \frac{1}{V} \int \int \int (\epsilon - \bar{\epsilon})^2 \; dV - w_3 \left(\frac{1}{2n_{31}} F_{\text{max}} + \frac{1}{2n_{32}} \frac{F_{\text{max}}}{\Delta t} \right) - P
\]

where \(V\) is the volume of the crash-box, \(t_f\) is the duration for which the simulation is conducted starting from the initial contact with the barrier, \(\epsilon\) is the equivalent strain, \(\bar{\epsilon}\) is its mean value, \(F_{\text{max}}\) is the maximum force at the rear of the crash-box that occurs in the first 0.5 ms of the collision, and \(\Delta t\) is the time that passes until the maximum force occurs. The first term is the specific internal energy, or the energy absorbed per unit mass of the crash-box during crash. It is a measure of how effectively it takes the collision energy. The second term is a measure of uniformity in the deformation. This term is introduced to avoid shapes that result in highly localized deformation. The smaller this term is, the more uniform is the deformation; accordingly, the integrity of the tube is expected to be better maintained. The third term includes the magnitude of the peak force during the first 0.5 ms, \(F_{\text{max}}\), as well as the average rate of increase in force, \(F_{\text{max}}/\Delta t\). During collisions, generally the force transmitted reaches a peak value at the initial stages of the impact. It is essential to reduce the magnitude of the peak force as well as the rate of increase in force during the initial phases of the collision to reduce the jerking effect felt by the occupants during impact. \(w_i\) are the weighting constants, their values are chosen according to the relative importance that the designer gives to the individual terms, and \(n_i\) are the normalization constants, which are \(n_1 = 38.1\; \text{J/kg}\), \(n_2 = 1195\), \(n_{31} = 156.7\; \text{kN}\), and \(n_{32} = 991.8\; \text{MN/s}\). These values are obtained from the simulations conducted for a 70 mm diameter circular tube, which is taken as benchmark. \(P\) is the penalty function, which includes the following terms:

\[
P = P_g + P_{\text{mass}} + P_{\text{en}} + P_{\text{an}}
\]

\(P_g\) is the geometric constraint, which is activated when a cross-sectional profile generated by the search algorithm does not fit the allowable spacing. If \(P_g\) becomes active, a large value is added to the objective function without calculating the other terms. \(P_{\text{max}}\) is the mass constraint such that

\[
P_{\text{mass}} = \begin{cases} 0 & \text{if } m \leq m_{\text{ben}} \\ 1000 \left(\frac{m - m_{\text{ben}}}{m_{\text{ben}}} \right)^2 + 100 \left(\frac{m - m_{\text{ben}}}{m_{\text{ben}}} \right) & \text{if } m > m_{\text{ben}} \end{cases}
\]

where \(m\) is the mass of the crash-box and \(m_{\text{ben}}\) is the mass of the benchmark structure. The mass constraint is introduced in order to avoid optimal designs that show increased crashworthiness over the benchmark design at the expense of increased weight. \(P_{\text{en}}\) is the penalty introduced to eliminate the designs taking a lower impact energy in comparison to the benchmark case. Its value is calculated as

\[
P_{\text{en}} = \begin{cases} 0 & \text{if } E_{\text{acc}} \geq E_{\text{ben}} \\ 3600 \left(\frac{E_{\text{ben}} - E_{\text{acc}}}{E_{\text{ben}}} \right)^2 + 450 \left(\frac{E_{\text{ben}} - E_{\text{acc}}}{E_{\text{ben}}} \right) & \text{if } E_{\text{acc}} < E_{\text{ben}} \end{cases}
\]

where \(E_{\text{acc}}\) is the total accumulated energy in the crash-box and \(E_{\text{ben}}\) is the benchmark value for energy. \(P_{\text{mass}}\) and \(P_{\text{en}}\) are formulated such that the terms yield small penalty values for small violations, but the penalty value increases quadratically for large violations. \(P_{\text{an}}\) is the analysis constraint, which is activated when finite element analysis fails due to sharp corners or some other reason. By introducing the penalty terms, the constrained optimization problem is transformed into an unconstrained one.

The above metric is formulated to find the best shape that maximizes the specific energy absorption, avoids development of extreme plastic strains leading to rupture in the structure and also reduces the peak force and its jerk effect while ensuring that this is achieved by keeping the total energy absorption above certain limit without increasing the mass.

Fig. 1. A scheme for EuroNCAP frontal offset crash tests [24].

Fig. 2. Defining the cross-sectional (a) and the longitudinal (b) profile of the tube by spline curves.
3.2. The optimization variables and definition of the shape

In the present study, the shapes of both the cross-sectional profile and the longitudinal profile as well as the wall thickness of the crash-box are varied. Making use of the double-symmetry of the cross section with respect to the x- and y-axes (Fig. 2a), only the shape of one-quarter is defined by a spline curve using three key points. Point 1 is allowed to move only horizontally; point 3 only vertically; on the other hand, point 2 can move in both directions. The longitudinal profile is defined by a series of coefficients as well as three length parameters. The first coefficient is the taper coefficient, c_α, which is used to define the taper angle, α. c_α is the ratio of the radial coordinates of the base and end-section key points. Furthermore, up to three ribs can be created at predefined locations along the crash-box. The profiles of the ribs are constructed using cubic spline curves, which are defined by key points defined by depth coefficients, r_i, and length parameters, l_i (See Fig. 2b). $r_i \times c_\alpha$ is the ratio of the radial distance of the key point at the ith rib to that at the base. With the help of $r_i \times c_\alpha$, the depths of the ribs, h_i, are defined. The taper coefficient, c_α, can take values larger or smaller than 1.0. Accordingly, taper angle, α, can be positive or negative. Similarly, h_i may take positive or negative values; the ribs may then be inward or outward. Due to size limitations, constraints are imposed on the design variables such that the key points may not go outside the domain shown in Fig. 2a. In addition to the outer boundary of the design space, the key points defining the base cross-sectional profile are not allowed to enter the inner circular region with 12 mm radius in order to avoid numerical difficulties. The dimensions of the outer boundary are chosen based on the dimensions of a crash-box currently used in a Renault car. If the algorithm assigns a position for a key point outside this domain, a large penalty value, $P_{2\gamma}$, is assigned to the objective function.

3.3. Modeling the crash conditions

3.3.1. Modeling of the barrier

EuroNCAP uses a deformable barrier made of aluminum honeycomb in frontal offset-impact tests. The deformable barrier is designed to simulate an average collision partner during an accident. Although quite complex structural problems can be solved by FEM, analysis time should not be long in design optimization studies where thousands of runs may be needed to locate the globally optimum design or a near globally optimum design. For this reason, the barrier is modeled as rigid in the simulations. Because a rigid barrier does not absorb any impact energy, the effect of collision is severer. Deb et al. [25] used a lower velocity for a key point outside this domain, a large penalty value, $P_{2\gamma}$, is assigned to the objective function.

According to Deb et al. [25], the ratio of the energy absorbed by the deformable barrier in a conventional offset test to the vehicle mass, E_{bar}/m, does not change much for cars of various masses. Taking E_{bar}/m as 82 J/kg as suggested by Deb et al. [25], m is found to be 0.483 m, but to be on the safe side it is taken as 0.5 m. The mass of the vehicle is 1116 kg (904 kg + 2 × 88 kg + 36 kg, which are the masses of Hybrid-III dummies of 88 kg and a luggage of 36 kg). So the effective mass, m^*, is 558 kg. In the simulations, the car hits a rigid wall with an initial velocity of 64 km/h (17.8 m/s) and 40% offset.

3.3.2. Modeling of the main vehicle body

Another concern is the modeling of the car. One option is to model the whole car as a deformable body in full detail, but this leads to excessively long computational times. Considering that a globally optimization procedure may require a high number of iterations, modeling the whole car is not a feasible option.

In this study, a lumped-parameter model is developed consisting of lumped masses, springs and dampers to account for the effects of the vehicle components behind the crash-box as well as the bumper beam in front of the crash-box, which is represented by a non-linear spring. Fig. 3 shows a depiction of the model used in this study. Because, at the early stages of the impact, plastic deformation mainly occurs in the bumper beam and the crash-box, then in the remaining structural parts of the vehicle, the main body is assumed to be linearly elastic and its mechanical response can be represented by linear springs during early phases of the collision during which the simulations are continued.

The model parameters are k_1, c_1, k_2, m_1, m_2, where k_1 and c_1 account for the elastic deformation and damping effects behind the crash-boxes, while the effect of the deforming bumper-beam is accounted for by a nonlinear spring. The force–displacement curve of this spring is defined by a quadratic polynomial, $F(u) = au^2 + bu$, up to $u = u^*$; after that the relation becomes linear, $F(u) = cu + d$. m_1 is the mass of the intermediary rigid plate and m_2 is the mass of the point mass such that $m_1 + m_2 = m^*$. Here, the other crash-box is assumed to take no impact energy in offset impact tests. In order for the lumped-parameter model to represent the behavior of the car during collision, suitable values for the model parameters should be chosen. For this purpose, the values of the model parameters are optimized so that the results of the present lumped-parameter car model match that of the full finite element model.
The lumped-parameter model is assembled with the crash-box as depicted in Fig. 3. Finite element simulations are conducted according to the collision scenario described above. The resulting reaction forces on the rigid barrier due to the collision are calculated as a function of time. The model parameters are optimized so that the impact forces on the wall obtained using the full car model and the lumped-parameter car model are as close to each other as possible. In order to estimate the closeness of the two outcomes, the following measure is used, which is the sum of the differences in the impact forces at corresponding time intervals:

\[
 f_{\text{obj}} = \sqrt{\sum_{i=0}^{100} \left(F(t_i + \frac{t_f - t_0}{100}) - \tilde{F}(t_i + \frac{t_f - t_0}{100}) \right)^2}
\]

(7)

where \(t_0 \) is the initial time, \(t_f \) is the final time, \(F \) is the resulting impact force on the barrier for Toyota Yaris Model, and \(\tilde{F} \) is the force for the lumped-parameter model. The values of \(k_1, c_1, m_1 \) together with the parameters defining the nonlinear spring representing the bumper-beam are optimized to yield the minimum value for \(f_{\text{obj}} \). This optimization problem is solved using the same search algorithm used to optimize the crash-box. After optimizing the parameters, the force-displacement relation is obtained for the spring representing the bumper-beam.

As depicted in Fig. 4, the lumped-parameter model gives a response close to that of the full car model. The optimum values of parameters \(k_1, c_1, m_1 \) and \(m_1 \) are found to be \(1690 \times 10^6 \) N/m, \(145.7 \times 10^7 \) N/s/m, and 112.79 kg, respectively. The parameters used to define the stiffness of the nonlinear spring are found to be \(a = -2.9 \) MN/m², \(b = 143.7 \) MN/m, \(c = 1.4 \) MN/m, \(d = 1.6 \) MN and the transition displacement is obtained as \(u^* = 0.32 \) mm.

3.4. Search algorithm

A search algorithm is utilized to find the optimum values of the variables that yield the maximum value for the objective function expressed in Eq. (1). Considering that typical structural optimization problems contain numerous local optimums, a local search algorithm may easily get stuck at a worse local optimum rather than the global optimum. If the problem has a complex solution domain, multiple restarts may even not work. Heuristic global search algorithms, on the other hand, may find the best configuration, but they require a large number of function calls for convergence. For this reason, they are not feasible for problems requiring long computational times like crash simulations. In the present study, in order to search for the globally optimum design without excessive computational burden, a hybrid algorithm combining global and local search algorithms is developed. In this method, the genetic algorithm (GA) is used to find configurations potentially close to the global optimum or one of the near global optimums. Then, these configurations are supplied to a local optimizer, Sequential Simples (Nelder & Mead) algorithm, which in turn locates the optimum.

3.5. Optimization procedure

In each iteration, new configurations are generated by the search algorithm. In order to evaluate the value of the objective function for these configurations, structural analyses of the corresponding crash events are carried out. For this purpose, a FE model is developed. The FE model and the optimization algorithm are integrated using a built-in ABAQUS python script. This code carries out FE analyses of the configurations generated by the search algorithm, writes the results on output files, and also evaluates the results to modify the values of the optimization variables according to the decision criteria of the hybrid search algorithm to obtain new candidate configurations.

At the start, the optimization code selects random values for the optimization variables within the feasible domain and creates the corresponding geometries of the crash-box. In this way, the initial population of GA is obtained. Using the predefined velocities, the boundary conditions, and the material properties, FE analyses are conducted for the randomly selected geometries. Based on the FE analysis results, the values of the objective function are calculated. The code then compares these values and selects new values for the optimization variables for the next generation according to the decision criteria of the GA. This procedure is repeated until the stopping criterion is satisfied, which requires no change in the best value found in three consecutive generations after the first 19 iterations. The initial population is taken as 300. The population is dynamic with an elitist approach that means it is initially high, but towards the end it gets lower; however the fittest member is always maintained. Crossover and mutation probabilities are also dynamic like the population. The best points found by GA are used as initial points by Nelder & Mead algorithm, which then tries to find the best local optimum in their neighborhood. Iterations are continued until the difference between the objective function values of the best and worst configurations becomes small.

4. Finite element modeling

Explicit FE methods are better in solving structural problems involving complex contact interactions occurring within a short duration compared to the implicit ones. Accordingly, commercial finite element software ABAQUS/Explicit is used in the present study to simulate the behavior of the crash-box system during crash tests.

4.1. Model geometry

The finite element model includes a deformable model of one crash-box as shown in Fig. 5. The main vehicle body is represented by a point mass, a spring, a damper, and an intermediary rigid block, which also serves uniform transmission of forces between the crash-box and the rest of the car. The bumper beam is
represented by a nonlinear spring, which is placed between the rigid plate and the rigid barrier for uniform force transmission.

4.2. Initial and boundary conditions

The initial and boundary conditions defined in the finite element model should reflect the conditions of the crash tests. Otherwise, the response of the crash-box cannot be correctly predicted. In the present finite element model, all parts except the rigid barrier have an initial velocity of 64 km/h (17.8 m/s). The rigid barrier which the car hits is fixed. The rear end of the crash-box and the intermediary rigid plate and block as well as the point mass are constrained to move only in the direction of the initial velocity so as to prevent relative movement of the blocks in the transverse directions considering that the transverse displacements are almost zero during the initial phases of the crash as shown in Fig. 6. Rotation of the vehicle occurs only at later stages of the crash. Because the geometry of the crash-box and the loading are symmetric with respect to the horizontal as well as vertical mid-planes, only one-quarter of the assembly is analyzed and the necessary symmetry conditions are applied on the corresponding interfaces.

4.3. Analysis time

Fig. 7 gives the energy absorbed by a circular crash-box, while Fig. 8 shows the change in the geometry of the crash-box at 1 ms intervals. As seen in the figures, the crash-box totally collapses after 5 ms, after that its stiffness greatly increases like a compression spring closed solid due to an overload, then a much larger energy is required to induce a small deformation. At this stage, the remaining portions of the car, which are initially stiffer than the bracket, start to absorb significant amount of energy. Accordingly, continuing the simulations longer than 5 ms is not appropriate, because the energy absorbing capacity of the bracket is consumed.

The analysis consists of a single explicit dynamic step. In the simulations, automatic time incrementation is used with element-by-element stable time increment estimates.

4.4. Constitutive model

Yield strength of materials typically increases with an increase in plastic strain as well as strain rate. During a crash test, the crash-box severely deforms in a very short time. For this reason, a realistic simulation of a crash event requires a constitutive model that accounts for non-linear and strain-rate dependent deformation and also work hardening. In the present FE model, Johnson-Cook constitutive model [27] is used. According to this model, the equivalent flow stress of the material, \(\sigma \), depends on equivalent plastic strain and its rate as

\[
\sigma = \left[\sigma_0 + B (\varepsilon_0^p)^n\right] \left[1 + C \ln \left(\frac{\dot{\varepsilon}}{\dot{\varepsilon}_0}\right)\right]
\]

(8)
where ε^{pl} is the equivalent plastic strain, $\dot{\varepsilon}^{pl}$ is its rate, $\bar{\varepsilon}$ is the reference strain rate, and σ_0 is the initial yield stress. The values of strain hardening coefficient, B, and exponent, n, can be obtained using quasi-static tension tests at the constant strain rate. The value of the strain rate parameter, C, is determined through dynamic tension tests conducted at different strain rates. Note that temperature effect is excluded in the present model.

4.5. Failure model

In crash tests, severe deformations are induced in the crash-box that can lead to local failures like cracks. Because failed elements may not continue to absorb energy, these may affect further deformation behavior and energy absorbing capacity of the crash-box. For this reason, a cumulative failure model proposed by Johnson and Cook [28] is adopted in this study.

In the model, a critical equivalent fracture strain, ε_f, is defined, which depends on hydrostatic tension, p, and effective stress, σ. The failure strain is expressed with four material constants, D_i, as

$$
\varepsilon_f = \frac{\varepsilon_0}{\Omega} + \sum \Delta \varepsilon^{pl} / \varepsilon_f
$$

A damage parameter is defined as

$$
\Omega = \frac{\varepsilon_0}{\varepsilon_f} + \sum \Delta \varepsilon^{pl} / \varepsilon_f
$$

where ε_0 is the initial equivalent plastic strain and $\Delta \varepsilon^{pl}$ is an increment of the equivalent plastic strain. Ω is defined at the integration point of every finite element and is used as a measure of failure. Failure occurs when Ω exceeds the unity. If an element fails, very low values are assigned to the element for the mechanical properties.

4.6. Meshing

Considering that the thickness is small in comparison to the other dimensions, shell elements are used to model the walls of the crash-box. The element type used in the model is S4R, a 4-node quadrilateral shell element with reduced integration and a large-strain formulation. The elements account for both finite membrane strains and arbitrary large rotations. These elements allow transverse shear deformation. Thick shell theory is applied for thick shell elements while Kirchhoff theory is applied for thin shell elements. Simpson integration rule is used with five integration points through the thickness.

4.7. Contact modeling

The contact between the crash-box and the rigid plate and block is modeled using surface-to-surface contact modeling. However, in order to account for self-contact of the crash-box, the general contact algorithm is used in the finite element model. The value of the friction coefficient is chosen to be 0.15 for all the contact interactions.

5. Results and discussion

5.1. Comparison of FEM results with a test case

In order to validate the accuracy of the finite element model used in the present study, the model is adapted to a similar problem and the results obtained by the FE model are compared with the experimental results obtained by Avalle and Chiandussi [4]. The tests were conducted on a drop weight testing machine in which an object was dropped on a thin-walled tube with tapered tip at rest. The mass of the hammer was 60 kg and its initial velocity was 10 m/s.

The test is simulated using the aforementioned approach with an element size of 2.0 mm. Fig. 9 shows the relation between the force measured at the supports and the displacement measured. The numerical results correlate well with the experimental data as seen in Fig. 9.

5.2. Results of crash-box optimization

The shape optimization problem is solved using various combinations of weighting factors, w_i in Eq. (1), either only one term in the objective function is used or more than one term, that means single and multi-objective optimizations are carried out. For single objective optimizations, the energy and mass constraints are not used. The optimization process is repeated for a constant thickness of 2.5 and 2.0 mm as well as variable thickness. The results are obtained for 6061-T6 aluminum alloy. The material properties provided by Corbett [29] are used in the simulations. The optimal shapes obtained by the algorithm and the optimal values of the optimization variables are given in Tables 1 and 2 respectively. Table 3 provides the results for the circular benchmark design. A comparison of the results for the optimum shapes as well as the chosen benchmark shapes is given in Table 4 in terms of the normalized values. Table 5 shows the deformation of the optimal crash-boxes during the course of collision.

It is noteworthy that the mass constraint ($m \leq 156$ g) and the total energy constraint ($E_{acc} \geq 6672$ J) do not become active in the multi-objective optimizations except for the design obtained with
In the single-objective optimizations, where the mass and energy constraints are not imposed, the masses of the optimal designs are also less than that of the circular crash-box except for the cases in which variance in the deformation is minimized with constant thickness. In contrast, if one tried to increase the static strength of the column, given the spacing limitations, one would increase the cross-sectional area, which would in turn decrease the stress. However, this would also increase its rigidity and thus reduce its capacity to absorb impact energy. In that case, the rest of the vehicle, which is represented by the lumped-parameter model in the present study, would take a significant portion of the impact energy. Too flexible columns, on the other hand, would quickly collapse and thus its energy absorbing capacity would be quickly consumed. One should recognize that simple rules of thumb will not work in complex problems. The optimization algorithm finds the optimal shapes that cannot be intuitively known because of the complexity of the deformation behavior.

The optimal shaped tube that can absorb the largest strain energy per unit mass is obtained if only the first term of the

<table>
<thead>
<tr>
<th>Weights $w_{1,2,3}$</th>
<th>$t = 2.5$ mm</th>
<th>$t = 2.0$ mm</th>
<th>Variable t</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_{1,2,3} = 1.0, 0.0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_{1,2,3} = 0.1, 0.1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_{1,2,3} = 0.0, 0.1$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_{1,2,3} = 0.5, 0.1, 0.4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$w_{1,2,3} = 0.5, 0.0, 0.5$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the benchmark case. If only the second term is optimized, that
Even though, in these runs, the third term, \(w_3\), is not
considered, the resulting values are much better than that of
the benchmark case. If only the second term is optimized, that
means if the variance in the deformation is minimized \((w_1 = 0,\
\text{w}_2 = 1 \text{ and } w_3 = 0)\), unacceptably low specific energy
values are obtained. If the third term in Eq. (1) is minimized
\((w_1 = 0, w_2 = 0, \text{ and } w_3 = 1)\), the algorithm typically
chooses larger taper angles and deeper circumferential ribs to
minimize the jerk effect, but specific energy absorption is not improved.
Besides, the total absorbed energies are much lower than that of the benchmark
cases. When the three terms are considered with \(w_1 = 0.5,\n\text{w}_2 = 0.1, \text{ and } w_3 = 0.4\), more balanced results are obtained
(Tables 1 and 5). Recognizing that the contribution of low variance in
deformation to crashworthiness is questionable, the crash-box
is optimized considering only the first and the third terms
\((w_1 = 0.5, w_2 = 0 \text{ and } w_3 = 0.5)\). For this case, \(F_{max}\) and \(F_{max}/\Delta t\)
values are improved in comparison to the first case \((w_1 = 1, w_2 = 0\n\text{ and } w_3 = 0)\). The crash-box designs with optimized thickness
outperform the corresponding designs optimized using the same
weights but with a predefined thickness.

Optimum design of the crash-box for high-speed collisions
increases the crashworthiness of the vehicle, thus providing
increased protection for passengers; however the crash-box must
also satisfy the requirements for low-velocity impact so that it
sustains limited deformation and prevents damage to the remaining
parts of the vehicle. This requirement can be integrated to the
optimization process in two ways. First, it can be used as a
constraint, but this requires additional simulations of the low-
velocity crash event at each iteration and thus significantly
increases the computational times. Second, recognizing that many
near global optimum designs are generated by the optimization
process, in which the objective function values are very close, the
optimization process is conducted without any regard for low-
velocity impact performance, then the constraint is checked only
for the optimal designs obtained at the end of the optimization
process. Because it is more feasible and cost-effective, the second
approach is adopted in this study. A standard low-velocity crash

Table 2
Optimal values of the optimization variables defining the longitudinal profile.

<table>
<thead>
<tr>
<th>Weights</th>
<th>(c_i)</th>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(r_3)</th>
<th>(l_1) (mm)</th>
<th>(l_2) (mm)</th>
<th>(l_3) (mm)</th>
<th>(f) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_{1,2,3} = 1, 0.0)</td>
<td>0.8840</td>
<td>0.9902</td>
<td>0.9333</td>
<td>0.9879</td>
<td>20.0517</td>
<td>22.1671</td>
<td>19.7076</td>
<td>2.5</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.1, 1.0)</td>
<td>0.8931</td>
<td>0.8426</td>
<td>1.1138</td>
<td>0.8723</td>
<td>26.9095</td>
<td>15.3196</td>
<td>24.5560</td>
<td>2.5</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.0, 1.0)</td>
<td>1.4253</td>
<td>0.9691</td>
<td>0.8249</td>
<td>1.1261</td>
<td>15.7988</td>
<td>8.5856</td>
<td>17.1982</td>
<td>2.5</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.5, 0.1, 1.0, 4)</td>
<td>0.8616</td>
<td>0.8609</td>
<td>0.9859</td>
<td>1.0205</td>
<td>13.3882</td>
<td>17.5132</td>
<td>20.8555</td>
<td>2.5</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.5, 0.0, 0.5)</td>
<td>0.8608</td>
<td>0.8610</td>
<td>0.9851</td>
<td>1.0203</td>
<td>13.3473</td>
<td>17.4272</td>
<td>20.9374</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Table 3
Results for the circular benchmark design.

<table>
<thead>
<tr>
<th>Weights</th>
<th>Specific energy ((J/g))</th>
<th>Variance</th>
<th>(F_{max}) (kN)</th>
<th>(F_{max}/\Delta t) (MN/s)</th>
<th>Mass (g)</th>
<th>Accumulated energy (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circular ((D=70))</td>
<td>42.8</td>
<td>1500</td>
<td>117.5</td>
<td>979.1</td>
<td>156</td>
<td>6672</td>
</tr>
</tbody>
</table>

Table 4
Comparison of the optimal and benchmark shapes in terms of normalized values.

<table>
<thead>
<tr>
<th>Weights</th>
<th>Specific energy</th>
<th>Variance</th>
<th>(F_{max})</th>
<th>(F_{max}/\Delta t)</th>
<th>Mass</th>
<th>Accumulated energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t=2.5) mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_{1,2,3} = 1, 0.0)</td>
<td>1.61</td>
<td>4.79</td>
<td>0.83</td>
<td>0.53</td>
<td>0.72</td>
<td>1.16</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.1, 1.0)</td>
<td>0.41</td>
<td>0.56</td>
<td>0.95</td>
<td>0.81</td>
<td>1.46</td>
<td>0.59</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.0, 1.0)</td>
<td>1.02</td>
<td>1.48</td>
<td>0.51</td>
<td>0.12</td>
<td>0.85</td>
<td>0.86</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.5, 0.1, 1.0, 4)</td>
<td>1.45</td>
<td>1.85</td>
<td>0.68</td>
<td>0.39</td>
<td>0.82</td>
<td>1.19</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.5, 0.0, 0.5)</td>
<td>1.46</td>
<td>1.98</td>
<td>0.68</td>
<td>0.39</td>
<td>0.82</td>
<td>1.19</td>
</tr>
</tbody>
</table>

\(t=2.0\) mm							
\(w_{1,2,3} = 1, 0.0\)	1.63	3.71	0.46	0.29	0.44	0.71	
\(w_{1,2,3} = 0.1, 1.0\)	0.45	0.46	0.87	0.50	1.23	0.56	
\(w_{1,2,3} = 0.0, 1.0\)	0.87	0.65	0.31	0.08	0.87	0.76	
\(w_{1,2,3} = 0.5, 0.1, 1.0, 4\)	1.11	1.64	0.54	0.32	0.90	1.00	
\(w_{1,2,3} = 0.5, 0.0, 0.5\)	1.57	5.94	0.84	0.52	0.72	1.13	

Table 5
Comparison of the optimal and benchmark shapes in terms of normalized values.

<table>
<thead>
<tr>
<th>Weights</th>
<th>Specific energy</th>
<th>Variance</th>
<th>(F_{max})</th>
<th>(F_{max}/\Delta t)</th>
<th>Mass</th>
<th>Accumulated energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t=2.5) mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(w_{1,2,3} = 1, 0.0)</td>
<td>2.34</td>
<td>5.85</td>
<td>0.77</td>
<td>0.47</td>
<td>0.67</td>
<td>1.56</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.1, 1.0)</td>
<td>0.66</td>
<td>0.29</td>
<td>0.17</td>
<td>0.10</td>
<td>0.36</td>
<td>0.24</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.0, 1.0)</td>
<td>0.72</td>
<td>0.31</td>
<td>0.10</td>
<td>0.02</td>
<td>0.36</td>
<td>0.26</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.5, 0.1, 0.1)</td>
<td>1.91</td>
<td>1.9</td>
<td>0.89</td>
<td>0.73</td>
<td>0.85</td>
<td>1.12</td>
</tr>
<tr>
<td>(w_{1,2,3} = 0.5, 0.0, 0.5)</td>
<td>1.80</td>
<td>4.37</td>
<td>0.64</td>
<td>0.39</td>
<td>0.59</td>
<td>1.06</td>
</tr>
</tbody>
</table>

Bench marks

| Circular \((D=70)\) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
| Rectangular \((70 \times 100)\) | 0.69 | 1.02 | 0.47 | 0.58 | 1.54 | 1.06 |
test, the Research Council for Automobile Repairs (RCAR) oblique frontal impact test, is used. In the RCAR test, a car with a velocity of 16 km/h hits a rigid wall oriented by 80° with respect to the direction of movement with 40% offset. The optimal designs presented in Table 2 and 4 as well as some near optimal designs are checked for low-velocity performance. Some of them are found to be better regarding low-velocity oblique impact requirements in comparison to the benchmark design, while some others are found to be worse. Table 6 gives a comparison of the performances of the circular benchmark design and the optimal designs of variable thickness having weights of $w_{1,2,3} = 1,0,0$ and $w_{1,2,3} = 0.5,0.1,0.4$. The optimal design of $w_{1,2,3} = 1,0,0$ shows a worse performance in comparison to the benchmark. On the other hand, the optimal design of $w_{1,2,3} = 0.5,0.1,0.4$ is better than the circular design in terms of specific energy absorption (SEA), F_{max} and F_{mean} and similar in performance in terms of accumulated energy and stroke efficiency, which is the displacement of the crash-box over its initial length. If the comparison is made for the circular design with the same mass, the performances of the optimal designs are far better in terms of energy absorption capability. In conclusion, one may state that optimizing a part for maximum crashworthiness does not ensure satisfaction of the low-velocity requirements, but one may find a design among the optimal designs that satisfies these requirements.
6. Conclusion

In the present study, the shape of a crash-box is optimized under impact conditions very similar to EuroNCAP tests to maximize its crashworthiness. The parameters defining the shapes of the cross-sectional and longitudinal profiles as well as the thickness are taken as the optimization variables. The crash-box is modeled as a deformable body in full detail. In order to reduce the computational time, a lumped-parameter model is developed to mimic the behavior of the main vehicle body using a parametric system identification method. The parameters of the lumped-parameter car model are tuned to reflect the response of the car predicted by a full car model.

The resulting optimum shapes depend highly on the formation of the objective function, the number of variables, and the range of values that can be assigned to the variables. The optimum shapes obtained in this study show significant improvement over the benchmark designs. By choosing different values for the weighting factors of the terms in the objective function, different optimal shapes are obtained. The best results are obtained, if only the first and the third terms are considered. When the thickness is allowed to vary, the crashworthiness of the crash-box is improved.

The designs optimized for maximum crashworthiness at high-velocity impact may not satisfy low-velocity requirements, but it is possible to find near global optimums that show satisfactory performance for low-velocity impacts.

Acknowledgments

Scientific Research Projects of Bogazici University (Code number 5893) is gratefully acknowledged for supporting this research.

References