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Ordinary Differential Equations
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Initial Value Problem (IVP)

Boundary Value Problem (BVP)
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Example
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(0.75+2)/2=1.37533
(1+0.5)/2=0.7522
(0+1)/2=0.511
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As h gets smaller we approach the exact solution.

Geometric interpretation of Euler’s 
Method
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Error in Euler

Euler approximation

→ Local discretization error

→ Global discretization error

Final global error:
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How to improve accuracy of Euler’s Method?
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Consider Taylor series

and compute the derivatives as
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For Taylor’s formula of order N

Local discretization error = O (hN+1)

Global discretization error = O (hN)
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Final global error:



8

Taylor’s method is cumbersome from numerical point of view since higher 
derivatives need to be calculated.
Alternative way to improve accuracy is to use several function evaluations:

slope at the 
beginning of 

step

slope at the end 
of step

↓↓

Local DE Global DE
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Modified Euler Method
(use two slopes sequentially)

Runge-Kutta Method : 
accuracy of Taylor N=4, no high derivatives, 

several function evaluations

Find ai, bi by matching the Runge-Kutta method to N=4 Taylor method.
This results in 11 equations for 13 unknowns. 

2 of ai, bi are selected and the rest are solved in terms of the selected ones.
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error in Simpson ~ O (h5); 
accumulated error in Runge-Kutta after M steps ~ O (h4 )
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For k2,k3,k4=0 we recover Euler’s method

Remark:

Find A, B, P, Q by matching the Runge-Kutta method to N=2 Taylor method:

let
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We need to select one of A,B,P or Q
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Sytem of ODEs
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Euler’s approximation

Runge-Kutta method of order=4 (RK4)



15

Higher order ODEs

Reduce the ODE to a system of lower order ODEs

→
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Boundary Value Problem (BVP)

Linear BVP
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Solution of 

is given as 

where u and v are the solutions of the following IVPs:

proof: 

→
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