Ordinary Differential Equations

Initial Value Problem (IVP)
$y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \quad x>0 \quad$ with $\quad y(0)=y_{0}, y^{\prime}(0)=y_{0}^{\prime}$

Boundary Value Problem (BVP)

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right) \quad a<x<b \quad \text { with } \quad y(a)=y_{a}, y(b)=y_{b}
$$

Initial Value Problem, $1^{\text {st }}$ order
$y^{\prime}=f(t, y) \quad t>0 \quad$ with $\quad y(0)=y_{0}$
forward difference approximation of $y^{\prime}=\frac{y(t+h)-y(t)}{h}$
$\Rightarrow y(t+h)=y(t)+h f(t, y)$

Seek for solution in $t_{0} \leq t \leq t_{n}$ with

$$
\begin{aligned}
& t_{i}=t_{0}+i h \quad i=0,1, \ldots, M \\
& t_{i+1}-t_{i}=h \quad \text { and } \quad h=\frac{t_{n}-t_{0}}{M} \\
& \Rightarrow y_{i+1}=y_{i}+h f\left(t_{i}, y_{i}\right) \quad \text { Euler approximation }
\end{aligned}
$$

Example

$y^{\prime}=\frac{t-y}{2} \quad y(0)=1$
Find $y(t)$ for $0 \leq t \leq 3$ with $h=1$
$y_{i+1}=y_{i}+h f\left(t_{i}, y_{i}\right)=y_{i}+\frac{t_{i}-y_{i}}{2}=\frac{t_{i}+y_{i}}{2}$

i	t_{i}	y_{i}
0	0	1
1	1	$(0+1) / 2=0.5$
2	2	$(1+0.5) / 2=0.75$
3	3	$(0.75+2) / 2=1.375$

As h gets smaller we approach the exact solution.

$$
\begin{aligned}
& y^{\prime}=\frac{t-y}{2} \quad y(0)=1 \\
& \text { Find } \quad y(t) \quad \text { for } \quad \mathbf{0} \leq t \leq 3 \quad \text { with } \quad h=1 \\
& y_{i+1}=y_{i}+h f\left(t_{i}, y_{i}\right)=y_{i}+\frac{t_{i}-y_{i}}{2}
\end{aligned}
$$

Figure 9.5 Euler's approximations

Geometric Description

If you start at the point $\left(t_{0}, y_{0}\right)$ and compute the value of the slope $m_{0}=f\left(t_{0}, y_{0}\right)$ and move horizontally the amount h and vertically $h f\left(t_{0}, y_{0}\right)$, then you are moving along the tangent line to $y(t)$ and will end up at the point $\left(t_{1}, y_{1}\right)$ (see Figure 9.5). Notice that $\left(t_{1}, y_{1}\right)$ is not on the desired solution curve! But this is the approximation that we are generating. Hence we must use $\left(t_{1}, y_{1}\right)$ as though it were correct and proceed by computing the slope $m_{1}=f\left(t_{1}, y_{1}\right)$ and using it to obtain the next vertical displacement $h f\left(t_{1}, y_{1}\right)$ to locate (t_{2}, y_{2}), and so on.

Example 9.4. Use Euler's method to solve the I.V.P.

$$
y^{\prime}=\frac{t-y}{2} \quad \text { on }[0,3] \text { with } y(0)=1 .
$$

Compare solutions for $h=1, \frac{1}{2}, \frac{1}{4}$, and $\frac{1}{8}$.

Table 9.2 Comparison of Euler Solutions with Different Step Sizes for $y^{\prime}=(t-y) / 2$ over $[0,3]$ with $y(0)=1$

t_{k}	y_{k}				
	$h=1$	$h=\frac{1}{2}$	$h=\frac{1}{4}$	$h=\frac{1}{8}$	$y\left(t_{k}\right)$ Exact
0	1.0	1.0	1.0	1.0	
0.125				0.9375	0.943239
0.25			0.875	0.886719	0.897491
0.375				0.846924	0.862087
0.50		0.75	0.796875	0.817429	0.836402
0.75			0.759766	0.786802	0.811868
1.00	0.5	0.6875	0.758545	0.790158	0.819592
1.50		0.765625	0.846386	0.882855	0.917100
2.00	0.75	0.949219	1.030827	1.068222	1.103638
2.50		1.211914	1.289227	1.325176	1.359514
3.00	1.375	1.533936	1.604252	1.637429	1.669390

Figure 9.6 Comparison of Euler solutions with different step sizes for $y^{\prime}=(t-y) / 2$ over [0,3] with the initial condition $y(0)=1$.

Error in Euler

$$
\begin{gathered}
y(t)=y\left(t_{0}\right)+y^{\prime}\left(t_{0}\right)\left(t-t_{0}\right)+\frac{y^{\prime \prime}\left(c_{1}\right)\left(t-t_{0}\right)^{2}}{2} . \\
y^{\prime}\left(t_{0}\right)=f\left(t_{0}, y\left(t_{0}\right)\right) \text { and } h=t_{1}-t_{0} \\
y\left(t_{1}\right)=y\left(t_{0}\right)+h f\left(t_{0}, y\left(t_{0}\right)\right)+y^{\prime \prime}\left(c_{1}\right) \frac{h^{2}}{2} . \\
y_{1}=y_{0}+h f\left(t_{0}, y_{0}\right), \quad \text { Euler approximation } \\
y^{\prime \prime}\left(c_{1}\right) \frac{h^{2}}{2} \quad \rightarrow \quad \text { Local discretization error } \\
\sum_{k=1}^{M} y^{(2)}\left(c_{k} \frac{h^{2}}{2} \approx M y^{(2)}(c) \frac{h^{2}}{2}=\frac{h M}{2} y^{(2)}(c) h=\frac{(b-a) y^{(2)}(c)}{2} h=\boldsymbol{O}\left(h^{1}\right)\right. \\
\rightarrow \text { Global discretization error }
\end{gathered}
$$

Final global error: $\quad E(y(b), h)=\left|y(b)-y_{M}\right|=O(h)$.
Example 9.5. Compare the F.G.E. when Euler's method is used to solve the I.V.P.

$$
y^{\prime}=\frac{t-y}{2} \quad \text { over }[0,3] \text { with } y(0)=1,
$$

using step sizes $1, \frac{1}{2}, \ldots, \frac{1}{64}$.
Table 9.3 Relation between Step Size and F.G.E. for Euler Solutions to
$y^{\prime}=(t-y) / 2$ over [0,3] with $y(0)=1$

Step size, h	Number of steps, M	Approximation to $y(3), y_{M}$	F.G.E. Error at $t=3$, $y(3)-y_{M}$	$\boldsymbol{O}(h) \approx C h$ where $C=0.256$
1	3	1.375	0.294390	0.256
$\frac{1}{2}$	6	1.533936	0.135454	0.128
$\frac{1}{4}$	12	1.604252	0.065138	0.064
$\frac{1}{8}$	24	1.637429	0.031961	0.032
$\frac{1}{16}$	48	1.653557	0.015833	0.016
$\frac{1}{32}$	96	1.661510	0.007880	0.008
$\frac{1}{64}$	192	1.665459	0.003931	0.004

How to improve accuracy of Euler's Method?
Consider Taylor series

$$
y(x+h)=y(x)+h y^{\prime}+\frac{h^{2}}{2} y^{\prime \prime}+\frac{h^{3}}{3!} y^{\prime \prime \prime}(\eta)+\ldots
$$

and compute the derivatives as

$$
\begin{aligned}
& y^{\prime}(t)=f \\
& y^{\prime \prime}(t)=f_{t}+f_{y} y^{\prime}=f_{t}+f_{y} f \\
& \ldots \ldots \\
& y(x+h)=y(x)+h f+\frac{h^{2}}{2}\left(f_{x}+f f_{y}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}(\eta)
\end{aligned}
$$

$f(x+h)=f(x)+h f^{\prime}(x)+\frac{h^{2} f^{\prime \prime}(x)}{2}+\frac{h^{3} f^{(3)}(x)}{6}+\frac{h^{4} f^{(4)}(x)}{24}+\cdots$

For Taylor's formula of order N
Local discretization error $=O\left(h^{N+1}\right)$
Global discretization error $=O\left(h^{N}\right)$

Example 9.8. Use the Taylor method of order $N=4$ to solve $y^{\prime}=(t-y) / 2$ on $[0,3]$ with $y(0)=1$. Compare solutions for $h=1, \frac{1}{2}, \frac{1}{4}$, and $\frac{1}{8}$.

$$
\begin{aligned}
& y(x+h)=y(x)+h y^{\prime}+\frac{h^{2}}{2} y^{(2)}+\frac{h^{3}}{3!} y^{(3)}+\frac{h^{4}}{4!} y^{(4)} \\
& y^{\prime}(t)=\frac{t-y}{2}, \\
& y^{(2)}(t)=\frac{d}{d t}\left(\frac{t-y}{2}\right)=\frac{1-y^{\prime}}{2}=\frac{1-(t-y) / 2}{2}=\frac{2-t+y}{4}, \\
& y^{(3)}(t)=\frac{d}{d t}\left(\frac{2-t+y}{4}\right)=\frac{0-1+y^{\prime}}{4}=\frac{-1+(t-y) / 2}{4}=\frac{-2+t-y}{8}, \\
& y^{(4)}(t)=\frac{d}{d t}\left(\frac{-2+t-y}{8}\right)=\frac{-0+1-y^{\prime}}{8}=\frac{1-(t-y) / 2}{8}=\frac{2-t+y}{16} .
\end{aligned}
$$

Table 9.6 Comparison of the Taylor Solutions of Order $N=4$ for $y^{\prime}=(t-y) / 2$ over $[0,3]$ with $y(0)=1$

t_{k}	y_{k}				
	$h=1$	$h=\frac{1}{2}$	$h=\frac{1}{4}$	$h=\frac{1}{8}$	$y\left(t_{k}\right)$ Exact
0	1.0	1.0	1.0	1.0	1.0
0.125				0.9432392	0.9432392
0.25			0.8974915	0.8974908	0.8974917
0.375				0.8620874	0.8620874
0.50		0.8364258	0.8364037	0.8364024	0.8364023
0.75			0.8118696	0.8118679	0.8118678
1.00	0.8203125	0.8196285	0.8195940	0.8195921	0.8195920
1.50		0.9171423	0.9171021	0.9170998	0.9170997
2.00	1.1045125	1.1036826	1.1036408	1.1036385	1.1036383
2.50		1.3595575	1.3595168	1.3595145	1.3595144
3.00	1.6701860	1.6694308	1.6693928	1.6693906	1.6693905

Final global error: $\quad E(y(3), h)=y(3)-y_{M}=O\left(h^{4}\right) \approx C h^{4}$.

Taylor's method is cumbersome from numerical point of view since higher derivatives need to be calculated.
Alternative way to improve accuracy is to use several function evaluations:

$$
y^{\prime}(t)=f(t, y(t)) \quad \text { over } \quad[a, b] \quad \text { with } \quad y\left(t_{0}\right)=y_{0}
$$

integrate $y^{\prime}(t)$ over $\left[t_{0}, t_{1}\right]$ to get
$\int_{t_{0}}^{t_{1}} f(t, y(t)) d t=\int_{t_{0}}^{t_{1}} y^{\prime}(t) d t=y\left(t_{1}\right)-y\left(t_{0}\right)$,
solved for $y\left(t_{1}\right)$

$$
y\left(t_{1}\right)=y\left(t_{0}\right)+\int_{t_{0}}^{t_{1}} f(t, y(t)) d t
$$

If the trapezoidal rule is used with the step size $h=t_{1}-t_{0}$,

$$
\begin{aligned}
& y\left(t_{1}\right) \approx y\left(t_{0}\right)+\frac{h}{2}\left(f\left(t_{0}, y\left(t_{0}\right)\right)+f\left(t_{1}, y\left(t_{1}\right)\right)\right) . \\
& \text { Euler's solution } y\left(t_{1}\right)=y\left(t_{0}\right)+h f\left(t_{0}, y\left(t_{0}\right)\right) \\
& y_{1}=y\left(t_{0}\right)+\frac{h}{2}\left(f\left(t_{0}, y_{0}\right)+f\left(t_{1}, y_{0}+h f\left(t_{0}, y_{0}\right)\right)\right)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& \text { Modified Euler Method } \\
& \text { (use two slopes sequentially) } \\
& y(t+h)=y(t)+h f\left(t+\frac{h}{2}, y+\frac{h}{2} f(t, y)\right)
\end{aligned}
$$
\]

Runge-Kutta Method :

accuracy of Taylor $\mathrm{N}=4$, no high derivatives, several function evaluations

$$
y_{k+1}=y_{k}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+w_{4} k_{4},
$$

where k_{1}, k_{2}, k_{3}, and k_{4} have the form

$$
\begin{aligned}
& k_{1}=h f\left(t_{k}, y_{k}\right), \\
& k_{2}=h f\left(t_{k}+a_{1} h, y_{k}+b_{1} k_{1}\right), \\
& k_{3}=h f\left(t_{k}+a_{2} h, y_{k}+b_{2} k_{1}+b_{3} k_{2}\right), \\
& k_{4}=h f\left(t_{k}+a_{3} h, y_{k}+b_{4} k_{1}+b_{5} k_{2}+b_{6} k_{3}\right) .
\end{aligned}
$$

Find a_{i}, b_{i} by matching the Runge-Kutta method to $\mathrm{N}=4$ Taylor method. This results in 11 equations for 13 unknowns.
2 of $a_{\mathrm{i}}, b_{\mathrm{i}}$ are selected and the rest are solved in terms of the selected ones.
the standard Runge-Kutta method of order $N=4$,

$$
y_{k+1}=y_{k}+\frac{h\left(f_{1}+2 f_{2}+2 f_{3}+f_{4}\right)}{6},
$$

where

$$
\begin{aligned}
& f_{1}=f\left(t_{k}, y_{k}\right), \\
& f_{2}=f\left(t_{k}+\frac{h}{2}, y_{k}+\frac{h}{2} f_{1}\right), \\
& f_{3}=f\left(t_{k}+\frac{h}{2}, y_{k}+\frac{h}{2} f_{2}\right), \\
& f_{4}=f\left(t_{k}+h, y_{k}+h f_{3}\right) .
\end{aligned}
$$

$$
\begin{equation*}
y\left(t_{1}\right)-y\left(t_{0}\right)=\int_{t_{0}}^{t_{1}} f(t, y(t)) d t \tag{8}
\end{equation*}
$$

If Simpson's rule is applied with step size $h / 2$, the approximation to the integral in (8) is
(9) $\quad \int_{t_{0}}^{t_{1}} f(t, y(t)) d t \approx \frac{h}{6}\left(f\left(t_{0}, y\left(t_{0}\right)\right)+4 f\left(t_{1 / 2}, y\left(t_{1 / 2}\right)\right)+f\left(t_{1}, y\left(t_{1}\right)\right)\right)$,
where $t_{1 / 2}$ is the midpoint of the interval. Three function values are needed; hence we make the obvious choice $f\left(t_{0}, y\left(t_{0}\right)\right)=f_{1}$ and $f\left(t_{1}, y\left(t_{1}\right)\right) \approx f_{4}$. For the value in the middle we chose the average of f_{2} and f_{3} :

$$
f\left(t_{1 / 2}, y\left(t_{1 / 2}\right)\right) \approx \frac{f_{2}+f_{3}}{2} .
$$

These values are substituted into (9), which is used in equation (8) to get y_{1} :
(10)

$$
y_{1}=y_{0}+\frac{h}{6}\left(f_{1}+\frac{4\left(f_{2}+f_{3}\right)}{2}+f_{4}\right)
$$

(a) Predicted slopes m_{j} to the solution curve $y=y(t)$

(b) Integral approximation:

$$
y\left(t_{1}\right)-y_{0}=\frac{h}{6}\left(f_{1}+2 f_{2}+2 f_{3}+f_{4}\right)
$$

Figure 9.9 The graphs $y=y(t)$ and $z=f(t, y(t))$ in the discussion of the Runge-Kutta method of order $N=4$.
error in Simpson $\sim O\left(h^{5}\right)$; accumulated error in Runge-Kutta after M steps $\sim O\left(h^{4}\right)$

Example 9.11. Compare the F.G.E. when the RK4 method is used to solve $y^{\prime}=(t-y) / 2$ over $[0,3]$ with $y(0)=1$ using step sizes $1, \frac{1}{2}, \frac{1}{4}$, and $\frac{1}{8}$.

Table 9.8 Comparison of the RK4 Solutions with Different Step Sizes for $y^{\prime}=(t-y) / 2$ over $[0,3]$ with $y(0)=1$

	y_{k}				
t_{k}	$h=1$	$h=\frac{1}{2}$	$h=\frac{1}{4}$	$h=\frac{1}{8}$	$y\left(t_{k}\right)$ Exact
0	1.0	1.0	1.0	1.0	1.0
0.125				0.9432392	0.9432392
0.25			0.8974915	0.8974908	0.8974917
0.375				0.8620874	0.8620874
0.50			0.8364037	0.8364024	0.8364023
0.75		0.8118696	0.8118679	0.8118678	
1.00	0.8203125	0.8196285	0.8195940	0.8195921	0.8195920
1.50		0.9171423	0.9171021	0.9170998	0.9170997
2.00	1.1045125	1.1036826	1.1036408	1.1036385	1.1036383
2.50		1.3595575	1.3595168	1.3595145	1.3595144
3.00	1.6701860	1.6694308	1.6693928	1.6693906	1.6693905
Table 9.9					Relation between Step Size and E.G.E. for the RK4 Solutions to

$y^{\prime}=(t-y) / 2$ over $[0,3]$ with $y(0)=1$

Step size, h	Number of steps, M	Approximation to $y(3), y_{M}$	F.G.E. Error at $t=3$, $y(3)-y_{M}$	$O\left(h^{4}\right) \approx C h^{4}$ where $C=-0.000614$
1	3	1.6701860	-0.0007955	-0.0006140
$\frac{1}{2}$	6	1.6694308	-0.0000403	-0.0000384
$\frac{1}{4}$	12	1.6693928	-0.0000023	-0.0000024
$\frac{1}{8}$	24	1.6693906	-0.0000001	-0.0000001

Remark:

$$
\begin{aligned}
& y_{k+1}=y_{k}+w_{1} k_{1}+w_{2} k_{2}+w_{3} k_{3}+w_{4} k_{4}, \\
& k_{1}=h f\left(t_{k}, y_{k}\right), \\
& k_{2}=h f\left(t_{k}+a_{1} h, y_{k}+b_{1} k_{1}\right), \\
& k_{3}=h f\left(t_{k}+a_{2} h, y_{k}+b_{2} k_{1}+b_{3} k_{2}\right), \\
& k_{4}=h f\left(t_{k}+a_{3} h, y_{k}+b_{4} k_{1}+b_{5} k_{2}+b_{6} k_{3}\right) .
\end{aligned}
$$

For $k_{2}, k_{3}, k_{4}=0$ we recover Euler's method

Runge-Kutta Methods of Order $N=2$

$y(t+h)=y(t)+A h f_{0}+B h f_{1}$,

$$
\begin{aligned}
& f_{0}=f(t, y) \\
& f_{1}=f\left(t+P h, y+Q h f_{0}\right)
\end{aligned}
$$

let $\quad f_{1}=f(t, y)+P h f_{t}(t, y)+Q h f_{y}(t, y) f(t, y)+C_{P} h^{2}+\cdots$,
$\longrightarrow \quad y(t+h)=y(t)+(A+B) h f(t, y)+B P h^{2} f_{t}(t, y)$

$$
+B Q h^{2} f_{y}(t, y) f(t, y)+B C_{P} h^{3}+\cdots
$$

Find A, B, P, Q by matching the Runge-Kutta method to $N=2$ Taylor method:

$$
\begin{aligned}
& y(t+h)=y(t)+h y^{\prime}(t)+\frac{1}{2} h^{2} y^{\prime \prime}(t)+C_{T} h^{3}+\cdots, \\
& \left.y^{\prime}(t)=f(t, y) . \quad\right\} \quad y^{\prime \prime}(t)=f_{t}(t, y)+f_{y}(t, y) f(t, y) . \\
& y^{\prime \prime}(t)=f_{t}(t, y)+f_{y}(t, y) y^{\prime}(t) . \\
& y(t+h)=y(t)+h f(t, y)+\frac{1}{2} h^{2} f_{t}(t, y) \\
& \longrightarrow \quad+\frac{1}{2} h^{2} f_{y}(t, y) f(t, y)+C_{T} h^{3}+\cdots .
\end{aligned}
$$

$$
\begin{aligned}
h f(t, y) & =(A+B) h f(t, y) & & \text { implies that } 1=A+B \\
\frac{1}{2} h^{2} f_{t}(t, y) & =B P h^{2} f_{t}(t, y) & & \text { implies that } \frac{1}{2}=B P \\
\frac{1}{2} h^{2} f_{y}(t, y) f(t, y) & =B Q h^{2} f_{y}(t, y) f(t, y) & & \text { implies that } \frac{1}{2}=B Q .
\end{aligned}
$$

Hence, if we require that A, B, P, and Q satisfy the relations

$$
A+B=1 \quad B P=\frac{1}{2} \quad B Q=\frac{1}{2},
$$

We need to select one of A, B, P or Q

$$
\begin{gathered}
y(t+h)=y(t)+A h f_{0}+B h f_{1} \\
\\
f_{0}=f(t, y) \\
f_{1}=f\left(t+P h, y+Q h f_{0}\right)
\end{gathered}
$$

Case (i): Choose $A=\frac{1}{2}$. This choice leads to $B=\frac{1}{2}, P=1$, and $Q=1$. If equation (21) is written with these parameters, the formula is

$$
\begin{equation*}
y(t+h)=y(t)+\frac{h}{2}(f(t, y)+f(t+h, y+h f(t, y))) . \tag{26}
\end{equation*}
$$

When this scheme is used to generate $\left\{\left(t_{k}, y_{k}\right)\right\}$, the result is Heun's method.
Case (ii): Choose $A=0$. This choice leads to $B=1, P=\frac{1}{2}$, and $Q=\frac{1}{2}$. If equation (21) is written with these parameters, the formula is

$$
\begin{equation*}
y(t+h)=y(t)+h f\left(t+\frac{h}{2}, y+\frac{h}{2} f(t, y)\right) \tag{27}
\end{equation*}
$$

When this scheme is used to generate $\left\{\left(t_{k}, y_{k}\right)\right\}$, it is called the modified Euler-Cauchy method.

Sytem of ODEs

$$
\begin{aligned}
& \frac{d x}{d t}=f(t, x, y) \\
& \frac{d y}{d t}=g(t, x, y)
\end{aligned} \quad \text { with } \quad\left\{\begin{array}{l}
x\left(t_{0}\right)=x_{0} \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

Seek for solution in $t_{0} \leq t \leq t_{n}$ with

$$
\begin{aligned}
& t_{i}=t_{0}+k h \quad k=0,1, \ldots, M \\
& t_{k+1}-t_{k}=h \quad \text { and } \quad h=\frac{t_{n}-t_{0}}{M}
\end{aligned}
$$

Euler's approximation

$$
\begin{aligned}
t_{k+1} & =t_{k}+h \\
x_{k+1} & =x_{k}+h f\left(t_{k}, x_{k}, y_{k}\right) \\
y_{k+1} & =y_{k}+h g\left(t_{k}, x_{k}, y_{k}\right) \quad \text { for } k=0,1, \ldots, M-1 .
\end{aligned}
$$

Runge-Kutta method of order $=4($ RK4 $)$

$$
\begin{aligned}
& x_{k+1}=x_{k}+\frac{h}{6}\left(f_{1}+2 f_{2}+2 f_{3}+f_{4}\right), \\
& y_{k+1}=y_{k}+\frac{h}{6}\left(g_{1}+2 g_{2}+2 g_{3}+g_{4}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
f_{1} & =f\left(t_{k}, x_{k}, y_{k}\right), & g_{1} & =g\left(t_{k}, x_{k}, y_{k}\right), \\
f_{2} & =f\left(t_{k}+\frac{h}{2}, x_{k}+\frac{h}{2} f_{1}, y_{k}+\frac{h}{2} g_{1}\right), & g_{2} & =g\left(t_{k}+\frac{h}{2}, x_{k}+\frac{h}{2} f_{1}, y_{k}+\frac{h}{2} g_{1}\right), \\
f_{3} & =f\left(t_{k}+\frac{h}{2}, x_{k}+\frac{h}{2} f_{2}, y_{k}+\frac{h}{2} g_{2}\right), & g_{3} & =g\left(t_{k}+\frac{h}{2}, x_{k}+\frac{h}{2} f_{2}, y_{k}+\frac{h}{2} g_{2}\right), \\
f_{4} & =f\left(t_{k}+h, x_{k}+h f_{3}, y_{k}+h g_{3}\right), & g_{4} & =g\left(t_{k}+h, x_{k}+h f_{3}, y_{k}+h g_{3}\right) .
\end{aligned}
$$

Higher order ODEs

$$
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right) \quad \text { with } x\left(t_{0}\right)=x_{0} \text { and } x^{\prime}\left(t_{0}\right)=y_{0}
$$

Reduce the ODE to a system of lower order ODEs

$$
\begin{aligned}
& x^{\prime}(t)=y(t) . \quad \rightarrow \quad x^{\prime \prime}(t)=y^{\prime}(t) \\
& \frac{d x}{d t}=y \quad \text { with } \quad\left\{\begin{array}{l}
x\left(t_{0}\right)=x_{0} \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
\end{aligned}
$$

Example 9.16. Consider the second-order initial value problem

$$
x^{\prime \prime}(t)+4 x^{\prime}(t)+5 x(t)=0 \quad \text { with } x(0)=3 \text { and } x^{\prime}(0)=-5 .
$$

(a) The differential equation has the form

$$
x^{\prime \prime}(t)=f\left(t, x(t), x^{\prime}(t)\right)=-4 x^{\prime}(t)-5 x(t) .
$$

(b) Using the substitution in (10), we get the reformulated problem:

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=-5 x-4 y
\end{aligned} \quad \text { with } \quad\left\{\begin{array}{l}
x(0)=3 \\
y(0)=-5
\end{array}\right.
$$

Table 9.14 Runge-Kutta Solution to $x^{\prime \prime}(t)+4 x^{\prime}(t)+5 x(t)=0$ with the Initial Conditions $x(0)=3$ and $x^{\prime}(0)=-5$

k	t_{k}	x_{k}	$x\left(t_{k}\right)$
0	0.0	3.00000000	3.00000000
1	0.1	2.52564583	2.52565822
2	0.2	2.10402783	2.10404686
3	0.3	1.73506269	1.73508427
4	0.4	1.41653369	1.41655509
5	0.5	1.14488509	1.14490455
10	1.0	0.33024302	0.33324661
20	2.0	-0.00620684	-0.00621162
30	3.0	-0.00001079	-0.00701204
40	4.0	-0.00091163	-0.00091170
48	4.8	-0.00004972	-0.00004969
49	4.9	-0.00002348	-0.00002345
50	5.0	-0.00000493	-0.00000490

Boundary Value Problem (BVP)

$$
x^{\prime \prime}=f\left(t, x, x^{\prime}\right) \quad \text { for } a \leq t \leq b, \quad x(a)=\alpha \quad \text { and } \quad x(b)=\beta .
$$

Linear BVP
$x^{\prime \prime}=p(t) x^{\prime}(t)+q(t) x(t)+r(t) \quad$ with $x(a)=\alpha$ and $x(b)=\beta$

Reduction to Two I.V.P.s: Linear Shooting Method

Solution of $\quad x^{\prime \prime}=p(t) x^{\prime}(t)+q(t) x(t)+r(t)$
is given as $\quad x(t)=u(t)+C v(t)$
where u and v are the solutions of the following IVPs:

$$
\begin{aligned}
& u^{\prime \prime}=p(t) u^{\prime}(t)+q(t) u(t)+r(t) \quad \text { with } u(a)=\alpha \text { and } u^{\prime}(a)=0 . \\
& v^{\prime \prime}=p(t) v^{\prime}(t)+q(t) v(t) \quad \text { with } v(a)=0 \text { and } v^{\prime}(a)=1 .
\end{aligned}
$$

proof:

$$
\begin{aligned}
x^{\prime \prime}=u^{\prime \prime}+C v^{\prime \prime} & =p(t) u^{\prime}(t)+q(t) u(t)+r(t)+p(t) C v^{\prime}(t)+q(t) C v(t) \\
& =p(t)\left(u^{\prime}(t)+C v^{\prime}(t)\right)+q(t)(u(t)+C v(t))+r(t) \\
& =p(t) x^{\prime}(t)+q(t) x(t)+r(t) .
\end{aligned}
$$

$$
x(t)=u(t)+C v(t)
$$

Imposing the boundary condition $x(b)=\beta$

$$
\begin{aligned}
& x(b)=u(b)+C v(b) . \quad \rightarrow \quad C=(\beta-u(b)) / v(b) \\
& \text { if } v(b) \neq 0 \\
& x(t)=u(t)+\frac{\beta-u(b)}{v(b)} v(t)
\end{aligned}
$$

Example 9.17. Solve the boundary value problem

$$
x^{\prime \prime}(t)=\frac{2 t}{1+t^{2}} x^{\prime}(t)-\frac{2}{1+t^{2}} x(t)+1
$$

with $x(0)=1.25$ and $x(4)=-0.95$ over the interval $[0,4]$.

t_{j}	u_{j}	w_{j}	$x_{j}=u_{j}+w_{j}$
0.0	1.250000	0.000000	1.250000
0.2	1.220131	0.097177	1.317308
0.4	1.132073	0.194353	1.326426
0.6	0.990122	0.291530	1.281652
0.8	0.800569	0.388707	1.189276
1.0	0.570844	0.485884	1.056728
1.2	0.308850	0.583061	0.891911
1.4	0.022522	0.680237	0.702759
1.6	-0.280424	0.777413	0.496989
1.8	-0.592609	0.874591	0.281982
2.0	-0.907039	0.971767	0.064728
2.2	-1.217121	1.068944	-0.148177
2.4	-1.516639	1.166121	-0.350518
2.6	-1.799740	1.263297	-0.536443
2.8	-2.060904	1.360474	-0.700430
3.0	-2.294916	1.457651	-0.837265
3.2	-2.496842	1.554828	-0.942014
3.4	-2.662004	1.652004	-1.010000
3.6	-2.785960	1.749181	-1.036779
3.8	-2.864481	1.846358	-1.018123
4.0	-2.893535	1.943535	-0.950000

Finite-Difference Method

Consider the linear equation $\quad x^{\prime \prime}=p(t) x^{\prime}(t)+q(t) x(t)+r(t)$
over $[a, b]$ with $x(a)=\alpha$ and $x(b)=\beta$.

The central-difference formulas

$$
\begin{aligned}
x^{\prime}\left(t_{j}\right) & =\frac{x\left(t_{j+1}\right)-x\left(t_{j-1}\right)}{2 h}+\boldsymbol{O}\left(h^{2}\right) \\
x^{\prime \prime}\left(t_{j}\right) & =\frac{x\left(t_{j+1}\right)-2 x\left(t_{j}\right)+x\left(t_{j-1}\right)}{h^{2}}+\boldsymbol{O}\left(h^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{x_{j+1}-2 x_{j}+x_{j-1}}{h^{2}}=p_{j} \frac{x_{j+1}-x_{j-1}}{2 h}+q_{j} x_{j}+r_{j}, \\
& p_{j}=p\left(t_{j}\right), q_{j}=q\left(t_{j}\right) \text {, and } r_{j}=r\left(t_{j}\right) \\
& \left(\frac{-h}{2} p_{j}-1\right) x_{j-1}+\left(2+h^{2} q_{j}\right) x_{j}+\left(\frac{h}{2} p_{j}-1\right) x_{j+1}=-h^{2} r_{j}, \\
& \text { for } j=1,2, \ldots, N-1, \text { where } x_{0}=\alpha \text { and } x_{N}=\beta .
\end{aligned}
$$

Example 9.18. Solve the boundary value problem

$$
x^{\prime \prime}(t)=\frac{2 t}{1+t^{2}} x^{\prime}(t)-\frac{2}{1+t^{2}} x(t)+1
$$

with $x(0)=1.25$ and $x(4)=-0.95$ over the interval $[0,4]$.

Table 9.17 Numerical Approximations for $x^{\prime \prime}(t)=\frac{2 t}{1+t^{2}} x^{\prime}(t)-\frac{2}{1+t^{2}} x(t)+1$					
	$x_{j, 1}$	$x_{j, 2}$	$x_{j, 3}$	$x_{j, 4}$	$x\left(t_{j}\right)$
t_{j}	$h=0.2$	$h=0.1$	$h=0.05$	$h=0.025$	exact
0.0	1.250000	1.250000	1.250000	1.250000	1.250000
0.2	1.314503	1.316646	1.317174	1.317306	1.317350
0.4	1.320607	1.325045	1.326141	1.326414	1.326505
0.6	1.272755	1.279533	1.281206	1.281623	1.281762
0.8	1.177399	1.186438	1.188670	1.189227	1.189412
1.0	1.042106	1.053226	1.055973	1.056658	1.056886
1.2	0.874878	0.887823	0.891023	0.891821	0.892086
1.4	0.683712	0.698181	0.701758	0.702650	0.702947
1.6	0.476372	0.492027	0.495900	0.496865	0.497187
1.8	0.260264	0.276749	0.280828	0.281846	0.282184
2.0	0.042399	0.059343	0.063537	0.064583	0.064931
2.2	-0.170616	-0.153592	-0.149378	-0.148327	-0.147977
2.4	-0.372557	-0.355841	-0.351702	-0.350669	-0.350325
2.6	-0.557565	-0.541546	-0.537580	-0.536590	-0.536261
2.8	-0.720114	-0.705188	-0.701492	-0.700570	-0.700262
3.0	-0.854988	-0.841551	-0.838223	-0.837393	-0.837116
3.2	-0.957250	-0.945700	-0.942839	-0.942125	-0.941888
3.4	-1.022221	-1.012958	-1.010662	-1.010090	-1.009899
3.6	-1.045457	-1.038880	-1.037250	-1.036844	-1.036709
3.8	-1.022727	-1.019238	-1.018373	-1.018158	-1.018086
4.0	-0.950000	-0.950000	-0.950000	-0.950000	-0.950000

Table 9.18 Errors in Numerical Approximations Using the Finite-Difference Method

	$x\left(t_{j}\right)-x_{j, 1}$ $=e_{j, 1}$	$x\left(t_{j}\right)-x_{j, 2}$ $=e_{j, 2}$	$x\left(t_{j}\right)-x_{j, 3}$ $=e_{j, 3}$	$x\left(t_{j}\right)-x_{j, 4}$ $=e_{j, 4}$
t_{j}	$h_{1}=0.2$	$h_{2}=0.1$	$h_{3}=0.05$	$h_{4}=0.025$
0.0	0.000000	0.000000	0.000000	0.000000
0.2	0.002847	0.000704	0.000176	0.000044
0.4	0.005898	0.001460	0.000364	0.000091
0.6	0.009007	0.002229	0.000556	0.000139
0.8	0.012013	0.002974	0.000742	0.000185
1.0	0.014780	0.003660	0.000913	0.000228
1.2	0.017208	0.004263	0.001063	0.000265
1.4	0.019235	0.004766	0.001189	0.000297
1.6	0.020815	0.005160	0.001287	0.000322
1.8	0.021920	0.005435	0.001356	0.000338
2.0	0.022533	0.005588	0.001394	0.000348
2.2	0.022639	0.005615	0.001401	0.000350
2.4	0.022232	0.005516	0.001377	0.000344
2.6	0.021304	0.005285	0.001319	0.000329
2.8	0.019852	0.004926	0.001230	0.000308
3.0	0.017872	0.004435	0.001107	0.000277
3.2	0.015362	0.003812	0.000951	0.000237
3.4	0.012322	0.003059	0.000763	0.000191
3.6	0.008749	0.002171	0.000541	0.000135
3.8	0.004641	0.001152	0.000287	0.000072
4.0	0.000000	0.000000	0.000000	0.000000

[^0]: $y_{1}=y\left(t_{0}\right)+\frac{h}{2}\left(f\left(t_{0}, y_{0}\right)+f\left(t_{1}, y_{0}+h f\left(t_{0}, y_{0}\right)\right)\right)$ Heun's method:
 slope at the beginning of slope at the end of step step
 $p_{k+1}=y_{k}+h f\left(t_{k}, y_{k}\right), \quad t_{k+1}=t_{k}+h$,

 (a) Derivative predictor:

 $$
 p_{1}=y_{0}+h f\left(t_{0}, y_{0}\right)
 $$

 Local DE $\quad-y^{(2)}\left(c_{k}\right) \frac{h^{3}}{12}$.

 $$
 y_{k+1}=y_{k}+\frac{h}{2}\left(f\left(t_{k}, y_{k}\right)+f\left(t_{k+1}, p_{k+1}\right)\right)
 $$

 (b) Integral corrector: $y_{1}-y_{0}=\frac{h}{2}\left(f_{0}+f_{1}\right)$

 Global DE
 $-\sum_{k=1}^{M} y^{(2)}\left(c_{k} \frac{h^{3}}{12} \approx \frac{b-a}{12} y^{(2)}(c) h^{2}=O\left(h^{2}\right)\right.$.

