Ordinary Differential Equations

Initial Value Problem (IVP)

y'' = f(x, y, y') x > 0 with $y(0) = y_0, y'(0) = y'_0$

Boundary Value Problem (BVP)

$$y'' = f(x, y, y')$$
 $a < x < b$ with $y(a) = y_a, y(b) = y_b$

Initial Value Problem, 1st order y' = f(t, y) t > 0 with $y(0) = y_0$ forward difference approximation of $y' = \frac{y(t+h) - y(t)}{h}$ $\Rightarrow y(t+h) = y(t) + hf(t, y)$ Seek for solution in $t_0 \le t \le t_n$ with $t_i = t_0 + ih$ i = 0, 1, ..., M $t_{i+1} - t_i = h$ and $h = \frac{t_n - t_0}{M}$ $\Rightarrow y_{i+1} = y_i + hf(t_i, y_i)$ Euler approximation

Geometric Description

If you start at the point (t_0, y_0) and compute the value of the slope $m_0 = f(t_0, y_0)$ and move horizontally the amount h and vertically $hf(t_0, y_0)$, then you are moving along the tangent line to y(t) and will end up at the point (t_1, y_1) (see Figure 9.5). Notice that (t_1, y_1) is not on the desired solution curve! But this is the approximation that we are generating. Hence we must use (t_1, y_1) as though it were correct and proceed by computing the slope $m_1 = f(t_1, y_1)$ and using it to obtain the next vertical displacement $hf(t_1, y_1)$ to locate (t_2, y_2) , and so on.

Example 9.4. Use Euler's method to solve the I.V.P.

$$y' = \frac{t - y}{2}$$
 on [0, 3] with $y(0) = 1$.

Compare solutions for $h = 1, \frac{1}{2}, \frac{1}{4}$, and $\frac{1}{8}$.

Table 9.2	Comparison of Euler Solutions with Different Step Sizes for	g' = (t - y)/2
over [0, 3]	with $y(0) = 1$	

			Уk		
t_k	h = 1	$h = \frac{1}{2}$	$h = \frac{1}{4}$	$h = \frac{1}{8}$	$y(t_k)$ Exac
0	1.0	1.0	1.0	1.0	1.0
0.125				0.9375	0.943239
0.25			0.875	0.886719	0.897491
0.375				0.846924	0.862087
0.50		0.75	0.796875	0.817429	0.836402
0.75			0.759766	0.786802	0.811868
1.00	0.5	0.6875	0.758545	0.790158	0.819592
1.50		0.765625	0.846386	0.882855	0.917100
2.00	0.75	0.949219	1.030827	1.068222	1.103638
2.50		1.211914	1.289227	1.325176	1.359514
3.00	1.375	1.533936	1.604252	1.637429	1.669390

Error in Euler

$$y(t) = y(t_0) + y'(t_0)(t - t_0) + \frac{y''(c_1)(t - t_0)^2}{2}.$$

$$y'(t_0) = f(t_0, y(t_0)) \text{ and } h = t_1 - t_0$$

$$y(t_1) = y(t_0) + hf(t_0, y(t_0)) + y''(c_1)\frac{h^2}{2}.$$

$$y_1 = y_0 + hf(t_0, y_0), \qquad \text{Euler approximation}$$

$$y''(c_1)\frac{h^2}{2} \longrightarrow \text{Local discretization error}$$

$$\sum_{k=1}^{M} y^{(2)}(c_k)\frac{h^2}{2} \approx My^{(2)}(c)\frac{h^2}{2} = \frac{hM}{2}y^{(2)}(c)h = \frac{(b - a)y^{(2)}(c)}{2}h = O(h^1)$$

$$\longrightarrow \text{Global discretization error}$$

Example 9.5. Compare the F.G.E. when Euler's method is used to s $y' = \frac{t-y}{2} \text{over } [0,3] \text{ with } y(0) = 1,$	solve the I.V.P
$y' = \frac{t - y}{2}$ over [0, 3] with $y(0) = 1$,	
using step sizes $1, \frac{1}{2}, \ldots, \frac{1}{64}$.	
Table 9.3 Relation between Step Size and F.G.E. for Euler Solutions to $y' = (t - y)/2$ over [0, 3] with $y(0) = 1$	
Step Number of Approximation Error at $t = 3$, wh	$\approx Ch$ here ≈ 0.256
1 3 1.375 0.294390 0.25	56
$\frac{1}{2}$ 6 1.533936 0.135454 0.12	28
1/4 12 1.604252 0.065138 0.00	64
$\frac{1}{8}$ 24 1.637429 0.031961 0.03	32
1 16 48 1.653557 0.015833 0.0	16
1/32 96 1.661510 0.007880 0.00	08
1/64 192 1.665459 0.003931 0.00	04

How to improve accuracy of Euler's Method?
Consider Taylor series

$$y(x+h) = y(x) + hy' + \frac{h^2}{2}y'' + \frac{h^3}{3!}y'''(\eta) + \dots$$
and compute the derivatives as

$$y'(t) = f$$

$$y''(t) = f_t + f_y y' = f_t + f_y f$$

$$\dots$$

$$y(x+h) = y(x) + hf + \frac{h^2}{2}(f_x + ff_y) + \frac{h^3}{3!}y'''(\eta)$$

$$f(x+h) = f(x) + hf'(x) + \frac{h^2 f''(x)}{2} + \frac{h^3 f^{(3)}(x)}{6} + \frac{h^4 f^{(4)}(x)}{24} + \cdots$$

For Taylor's formula of order *N*
Local discretization error = *O* (*h*^{N+1})
Global discretization error = *O* (*h*^N)

Example 9.8. Use the Taylor method of order N = 4 to solve y' = (t - y)/2 on [0, 3] with y(0) = 1. Compare solutions for $h = 1, \frac{1}{2}, \frac{1}{4}$, and $\frac{1}{8}$.

$$y(x+h) = y(x) + hy' + \frac{h^2}{2}y^{(2)} + \frac{h^3}{3!}y^{(3)} + \frac{h^4}{4!}y^{(4)}$$

$$y'(t) = \frac{t-y}{2},$$

$$y^{(2)}(t) = \frac{d}{dt}\left(\frac{t-y}{2}\right) = \frac{1-y'}{2} = \frac{1-(t-y)/2}{2} = \frac{2-t+y}{4},$$

$$y^{(3)}(t) = \frac{d}{dt}\left(\frac{2-t+y}{4}\right) = \frac{0-1+y'}{4} = \frac{-1+(t-y)/2}{4} = \frac{-2+t-y}{8}$$

$$y^{(4)}(t) = \frac{d}{dt}\left(\frac{-2+t-y}{8}\right) = \frac{-0+1-y'}{8} = \frac{1-(t-y)/2}{8} = \frac{2-t+y}{16}$$

Table 9.	6 Comparison o	f the Taylor Solu	tions of Order N	$= 4 \text{ for } y' = (t - t)^{-1}$	- y)/2		
over $[0, 3]$ with $y(0) = 1$							
t _k	h = 1	$h = \frac{1}{2}$	$h = \frac{1}{4}$	$h = \frac{1}{8}$	y(tk) Exac		
0	1.0	1.0	1.0	1.0	1.0		
0.125				0.9432392	0.9432392		
0.25			0.8974915	0.8974908	0.8974917		
0.375				0.8620874	0.8620874		
0.50		0.8364258	0.8364037	0.8364024	0.8364023		
0.75			0.8118696	0.8118679	0.8118678		
1.00	0.8203125	0.8196285	0.8195940	0.8195921	0.8195920		
1.50		0.9171423	0.9171021	0.9170998	0.9170997		
2.00	1.1045125	1.1036826	1.1036408	1.1036385	1.1036383		
2.50		1.3595575	1.3595168	1.3595145	1.3595144		
3.00	1.6701860	1.6694308	1.6693928	1.6693906	1.6693905		

Taylor's method is cumbersome from numerical point of view since higher derivatives need to be calculated. Alternative way to improve accuracy is to use several function evaluations: $y'(t) = f(t, y(t)) \quad \text{over} \quad [a, b] \quad \text{with} \quad y(t_0) = y_0.$ integrate y'(t) over $[t_0, t_1]$ to get $\int_{t_0}^{t_1} f(t, y(t)) dt = \int_{t_0}^{t_1} y'(t) dt = y(t_1) - y(t_0).$ solved for $y(t_1)$ $y(t_1) = y(t_0) + \int_{t_0}^{t_1} f(t, y(t)) dt.$ If the trapezoidal rule is used with the step size $h = t_1 - t_0.$ $y(t_1) \approx y(t_0) + \frac{h}{2}(f(t_0, y(t_0)) + f(t_1, y(t_1))).$ Euler's solution $y(t_1) = y(t_0) + hf(t_0, y(t_0))$

Modified Euler Method (use two slopes sequentially)

$$y(t+h) = y(t) + hf\left(t + \frac{h}{2}, y + \frac{h}{2}f(t, y)\right)$$

Runge-Kutta Method :accuracy of Taylor N=4, no high derivatives,
several function evaluations $y_{k+1} = y_k + w_1k_1 + w_2k_2 + w_3k_3 + w_4k_4$,where k_1, k_2, k_3 , and k_4 have the form $k_1 = hf(t_k, y_k)$,
 $k_2 = hf(t_k + a_1h, y_k + b_1k_1)$,
 $k_3 = hf(t_k + a_2h, y_k + b_2k_1 + b_3k_2)$,
 $k_4 = hf(t_k + a_3h, y_k + b_4k_1 + b_5k_2 + b_6k_3)$.Find a_i, b_i by matching the Runge-Kutta method to N=4 Taylor method.
This results in 11 equations for 13 unknowns.2 of a_i, b_i are selected and the rest are solved in terms of the selected ones.

the standard Runge-Kutta method of order N = 4,

$$y_{k+1} = y_k + \frac{h(f_1 + 2f_2 + 2f_3 + f_4)}{6},$$

where

$$f_{1} = f(t_{k}, y_{k}),$$

$$f_{2} = f\left(t_{k} + \frac{h}{2}, y_{k} + \frac{h}{2}f_{1}\right),$$

$$f_{3} = f\left(t_{k} + \frac{h}{2}, y_{k} + \frac{h}{2}f_{2}\right),$$

$$f_{4} = f(t_{k} + h, y_{k} + hf_{3}).$$

(8)
$$y(t_1) - y(t_0) = \int_{t_0}^{t_1} f(t, y(t)) dt.$$

If Simpson's rule is applied with step size h/2, the approximation to the integral in (8) is

(9)
$$\int_{t_0}^{t_1} f(t, y(t)) dt \approx \frac{h}{6} (f(t_0, y(t_0)) + 4f(t_{1/2}, y(t_{1/2})) + f(t_1, y(t_1))),$$

where $t_{1/2}$ is the midpoint of the interval. Three function values are needed; hence we make the obvious choice $f(t_0, y(t_0)) = f_1$ and $f(t_1, y(t_1)) \approx f_4$. For the value in the middle we chose the average of f_2 and f_3 :

$$f(t_{1/2}, y(t_{1/2})) \approx \frac{f_2 + f_3}{2}$$

These values are substituted into (9), which is used in equation (8) to get y_1 :

(10)
$$y_1 = y_0 + \frac{h}{6} \left(f_1 + \frac{4(f_2 + f_3)}{2} + f_4 \right).$$

		y(0) = 1 usi	ng step sizes i				used to	solve $y' = ($	(t-y)/2
		Comparison of rith $y(0) = 1$	the RK4 Solutio	ns w	ith Different	Step S	izes for y'	=(t - y)/2	
			у	k					
t_k		h = 1	$h = \frac{1}{2}$		$h = \frac{1}{4}$	h	$=\frac{1}{8}$	$y(t_k)$ Exact	
0 0.12 0.25 0.37		1.0	1.0		.0 .8974915	0.89	32392 74908 520874	1.0 0.9432392 0.8974917 0.8620874	
0.50 0.75 1.00		0.8203125	0.8364258 0.8196285	0	.8364037 .8118696 .8195940	0.83 0.81	64024 18679 95921	0.8364023 0.8118678 0.8195920	
1.50 2.00		1.1045125	0.9171423 1.1036826	0 1	.9171021 .1036408	0.91	70998 36385	0.9170997 1.1036383	
2.50 3.00		1.6701860	1.3595575 1.6694308		.3595168 .6693928		95145 93906	1.3595144 1.6693905	
	ble 9.9 = (t - y		ween Step Size a with $y(0) = 1$	and F	F.G.E. for th	e RK4	Solutions	to	
	Step ze, h	Number of steps, M	Approximation to y(3), y _M		F.G.E Error at t y(3) - 2	= 3,	w	$h \approx Ch^4$ here 0.000614	
	1	3	1.6701860)	-0.0007	955	-0.0	006140	
	$\frac{1}{2}$	6	1.6694308	3	-0.0000	403	-0.0	00384	
	$\frac{1}{4}$	12	1.6693928	3	-0.0000	023	-0.0	000024	
	$\frac{1}{8}$	24	1.6693906	5	-0.0000	001	-0.0	00001	

Remark:

$$y_{k+1} = y_k + w_1k_1 + w_2k_2 + w_3k_3 + w_4k_4,$$

$$\begin{split} k_1 &= hf(t_k, y_k), \\ k_2 &= hf(t_k + a_1h, y_k + b_1k_1), \\ k_3 &= hf(t_k + a_2h, y_k + b_2k_1 + b_3k_2), \\ k_4 &= hf(t_k + a_3h, y_k + b_4k_1 + b_5k_2 + b_6k_3). \end{split}$$

For $k_2, k_3, k_4=0$ we recover Euler's method

$$hf(t, y) = (A + B)hf(t, y)$$
 implies that $1 = A + B$,

$$\frac{1}{2}h^{2}f_{t}(t, y) = BPh^{2}f_{t}(t, y)$$
 implies that $\frac{1}{2} = BP$,

$$\frac{1}{2}h^{2}f_{y}(t, y)f(t, y) = BQh^{2}f_{y}(t, y)f(t, y)$$
 implies that $\frac{1}{2} = BQ$.
Hence, if we require that A, B, P , and Q satisfy the relations

$$A + B = 1 \qquad BP = \frac{1}{2} \qquad BQ = \frac{1}{2},$$

We need to select one of A, B, P or Q

 $y(t+h) = y(t) + Ahf_0 + Bhf_1,$

$$f_0 = f(t, y),$$

$$f_1 = f(t + Ph, y + Qhf_0).$$

Case (i): Choose $A = \frac{1}{2}$. This choice leads to $B = \frac{1}{2}$, P = 1, and Q = 1. If equation (21) is written with these parameters, the formula is

(26)
$$y(t+h) = y(t) + \frac{h}{2}(f(t,y) + f(t+h,y+hf(t,y))).$$

When this scheme is used to generate $\{(t_k, y_k)\}$, the result is Heun's method. *Case (ii):* Choose A = 0. This choice leads to B = 1, $P = \frac{1}{2}$, and $Q = \frac{1}{2}$. If equation (21) is written with these parameters, the formula is

(27)
$$y(t+h) = y(t) + hf\left(t + \frac{h}{2}, y + \frac{h}{2}f(t, y)\right).$$

When this scheme is used to generate $\{(t_k, y_k)\}$, it is called the *modified Euler-Cauchy method*.

Sytem of ODEs

 $\frac{dx}{dt} = f(t, x, y) \quad \text{with} \quad \begin{cases} x(t_0) = x_0, \\ y(t_0) = y_0. \end{cases}$ Seek for solution in $t_0 \le t \le t_n$ with $t_i = t_0 + kh$ $k = 0, 1, \dots, M$ $t_{k+1} - t_k = h$ and $h = \frac{t_n - t_0}{M}$ Euler's approximation $t_{k+1} = t_k + h, \\ x_{k+1} = x_k + hf(t_k, x_k, y_k), \\ y_{k+1} = y_k + hg(t_k, x_k, y_k) \quad \text{for } k = 0, 1, \dots, M - 1.$

Higher order ODEs

$$x''(t) = f(t, x(t), x'(t)) \quad \text{with } x(t_0) = x_0 \text{ and } x'(t_0) = y_0.$$
Reduce the ODE to a system of lower order ODEs

$$x'(t) = y(t). \quad \rightarrow \quad x''(t) = y'(t)$$

$$\frac{dx}{dt} = y \qquad \text{with } \begin{cases} x(t_0) = x_0, \\ y(t_0) = y_0. \end{cases}$$

Example 9.16. Consider the second-order initial value problem $x''(t) + 4x'(t) + 5x(t) = 0 \quad \text{with } x(0) = 3 \text{ and } x'(0) = -5.$ (a) The differential equation has the form x''(t) = f(t, x(t), x'(t)) = -4x'(t) - 5x(t).(b) Using the substitution in (10), we get the reformulated problem: $\frac{dx}{dt} = y \qquad \text{with} \qquad \begin{cases} x(0) = 3, \\ y(0) = -5. \end{cases}$

k,	1k	xk	$x(t_k)$
0	0.0	3.00000000	3.00000000
1	0.1	2.52564583	2.52565822
2	0.2	2.10402783	2.10404686
3	0.3	1.73506269	1.73508427
4	0.4	1.41653369	1.41655509
5	0.5	1.14488509	1.14490455
10	1.0	0.33324302	0.33324661
20	2.0	-0.00620684	-0.00621162
30	3.0	-0.00701079	-0.00701204
40	4.0	-0.00091163	-0.00091170
48	4.8	-0.00004972	-0.00004969
19	4.9	-0.00002348	-0.00002345
50	5.0	-0.00000493	-0.00000490

Table 9.14 Runge-Kutta Solution to x''(t) + 4x'(t) + 5x(t) = 0 with the Initial Conditions x(0) = 3 and x'(0) = -5

x(t) = u(t) + Cv(t)Imposing the boundary condition $x(b) = \beta$ $x(b) = u(b) + Cv(b). \quad \rightarrow \quad C = (\beta - u(b))/v(b).$ if $v(b) \neq 0$, $x(t) = u(t) + \frac{\beta - u(b)}{v(b)}v(t).$

Example 9.17.	Solve the box	ındary value p	roblem
with $x(0) = 1.2$			$t) - \frac{2}{1+t^2}x(t)$ e interval [0, 4]
Table : Equati	9.15 Approximate on $x''(t) = \frac{2t}{1+t^2}x$	e Solutions $\{x_j\} =$ $'(t) - \frac{2}{1+t^2} + 1$	$\{u_j + w_j\}$ to the
tj	u j	wj	$x_j = u_j + w_j$
0.0	1.250000	0.000000	1.250000
0.2	1.220131	0.097177	1.317308
0.4	1.132073	0.194353	1.326426
0.6	0.990122	0.291530	1.281652
0.8	0.800569	0.388707	1.189276
1.0	0.570844	0.485884	1.056728
1.2	0.308850	0.583061	0.891911
1.4	0.022522	0.680237	0.702759
1.6	-0.280424	0.777413	0.496989
1.8	-0.592609	0.874591	0.281982
2.0	-0.907039	0.971767	0.064728
2.2	-1.217121	1.068944	-0.148177
2.4	-1.516639	1.166121	-0.350518
2.6	-1.799740	1.263297	-0.536443
2.8	-2.060904	1.360474	-0.700430
3.0	-2.294916	1.457651	-0.837265
3.2	-2.496842	1.554828	-0.942014
3.4	-2.662004	1.652004	-1.010000
3.6	-2.785960	1.749181	-1.036779
3.8	-2.864481	1.846358	-1.018123
4.0	-2.893535	1.943535	-0.950000

Finite-Difference Method

Consider the linear equation x'' = p(t)x'(t) + q(t)x(t) + r(t)over [a, b] with $x(a) = \alpha$ and $x(b) = \beta$.

The central-difference formulas

$$x'(t_j) = \frac{x(t_{j+1}) - x(t_{j-1})}{2h} + O(h^2)$$

$$x''(t_j) = \frac{x(t_{j+1}) - 2x(t_j) + x(t_{j-1})}{h^2} + O(h^2).$$

$$\frac{x_{j+1} - 2x_j + x_{j-1}}{h^2} = p_j \frac{x_{j+1} - x_{j-1}}{2h} + q_j x_j + r_j,$$

$$p_j = p(t_j), \ q_j = q(t_j), \text{ and } r_j = r(t_j).$$

$$\left(\frac{-h}{2}p_j - 1\right) x_{j-1} + (2 + h^2 q_j) x_j + \left(\frac{h}{2}p_j - 1\right) x_{j+1} = -h^2 r_j,$$
for $j = 1, 2, ..., N - 1$, where $x_0 = \alpha$ and $x_N = \beta$.

$$\begin{bmatrix} 2+h^2q_1 & \frac{h}{2}p_1-1 & & \\ \frac{-h}{2}p_2-1 & 2+h^2q_2 & \frac{h}{2}p_2-1 & & O \\ & \frac{-h}{2}p_j-1 & 2+h^2q_j & \frac{h}{2}p_j-1 & \\ O & & \frac{-h}{2}p_{N-2}-1 & 2+h^2q_{N-2} & \frac{h}{2}p_{N-2}-1 \\ & & & \frac{-h^2}{2}p_{N-1}-1 & 2+h^2q_{N-1} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_j \\ x_{N-2} \\ x_{N-1} \end{bmatrix}$$
$$= \begin{bmatrix} -h^2r_1 + \left(\frac{h}{2}p_1+1\right)\alpha \\ -h^2r_2 \\ -h^2r_j \\ -h^2r_{N-2} \\ -h^2r_{N-1} + \left(\frac{-h}{2}p_{N-1}+1\right)\beta \end{bmatrix}$$

Example 9.18. Solve the boundary value problem

$$x''(t) = \frac{2t}{1+t^2}x'(t) - \frac{2}{1+t^2}x(t) + 1$$

with x(0) = 1.25 and x(4) = -0.95 over the interval [0, 4].

Table 9.17 Numerical Approximations for $x''(t) = \frac{2t}{1+t^2}x'(t) - \frac{2}{1+t^2}x(t) + 1$							
tj	$h = 0.2^{x_{j,1}}$	h = 0.1	$k_{j,3} = 0.05$	$k_{j,4} = 0.025$	$x(t_j)$ exact		
0.0	1.250000	1.250000	1.250000	1.250000	1.25000		
0.2	1.314503	1.316646	1.317174	1.317306	1.31735		
0.4	1.320607	1.325045	1.326141	1.326414	1.32650		
0.6	1.272755	1.279533	1.281206	1.281623	1.28176		
0.8	1.177399	1.186438	1.188670	1.189227	1.18941		
1.0	1.042106	1.053226	1.055973	1.056658	1.05688		
1.2	0.874878	0.887823	0.891023	0.891821	0.89208		
1.4	0.683712	0.698181	0.701758	0.702650	0.70294		
1.6	0.476372	0.492027	0.495900	0.496865	0.49718		
1.8	0.260264	0.276749	0.280828	0.281846	0.28218		
2.0	0.042399	0.059343	0.063537	0.064583	0.06493		
2.2	-0.170616	-0.153592	-0.149378	-0.148327	-0.14797		
2.4	-0.372557	-0.355841	-0.351702	-0.350669	-0.35032		
2.6	-0.557565	-0.541546	-0.537580	-0.536590	-0.53626		
2.8	-0.720114	-0.705188	-0.701492	-0.700570	-0.70026		
3.0	-0.854988	-0.841551	-0.838223	-0.837393	-0.83711		
3.2	-0.957250	-0.945700	-0.942839	-0.942125	-0.94188		
3.4	-1.022221	-1.012958	-1.010662	-1.010090	-1.00989		
3.6	-1.045457	-1.038880	-1.037250	-1.036844	-1.03670		
3.8	-1.022727	-1.019238	-1.018373	-1.018158	-1.01808		
4.0	-0.950000	-0.950000	-0.950000	-0.950000	-0.95000		

Table 9	0.18 Errors in Nume	rical Approximations	Using the Finite-Differ	ence Method
	$x(t_j) - x_{j,1}$	$x(t_j) - x_{j,2}$	$x(t_j) - x_{j,3}$	$x(t_j) - x_{j,4}$
t_j	$= e_{j,1}$	$= e_{j,2}$	$= e_{j,3}$	$=e_{j,4}$
	$h_1 = 0.2$	$h_2 = 0.1$	$h_3 = 0.05$	$h_4 = 0.025$
0.0	0.000000	0.000000	0.000000	0.000000
0.2	0.002847	0.000704	0.000176	0.000044
0.4	0.005898	0.001460	0.000364	0.000091
0.6	0.009007	0.002229	0.000556	0.000139
0.8	0.012013	0.002974	0.000742	0.000185
1.0	0.014780	0.003660	0.000913	0.000228
1.2	0.017208	0.004263	0.001063	0.000265
1.4	0.019235	0.004766	0.001189	0.000297
1.6	0.020815	0.005160	0.001287	0.000322
1.8	0.021920	0.005435	0.001356	0.000338
2.0	0.022533	0.005588	0.001394	0.000348
2.2	0.022639	0.005615	0.001401	0.000350
2.4	0.022232	0.005516	0.001377	0.000344
2.6	0.021304	0.005285	0.001319	0.000329
2.8	0.019852	0.004926	0.001230	0.000308
3.0	0.017872	0.004435	0.001107	0.000277
3.2	0.015362	0.003812	0.000951	0.000237
3.4	0.012322	0.003059	0.000763	0.000191
3.6	0.008749	0.002171	0.000541	0.000135
3.8	0.004641	0.001152	0.000287	0.000072
4.0	0.000000	0.000000	0.000000	0.000000