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Sources for presentations:

• Textbook
• http://math.fullerton.edu/mathews/numerical.html
• http://numericalmethods.eng.usf.edu
• MIT Open Courseware “Introduction to Numerical Analysis 

for Engineering”

The Solution of a Nonlinear Equation 
f(x) = 0

Example:
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General procedure for 
solving nonlinear equations/

root finding/finding zero

• Plot the function
• Make an initial guess
• Iteratively refine the initial guess with a 

root-finding algorithm

İteration: a process is repeated until an answer is achieved.

Bisection Method
An equation f(x)=0, where f(x) is a real 
continuous function, has at least one root 
between xl and xu if f(xl) f(xu) < 0.
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Step 1

• Choose xl and xu as two guesses for the root such 
that f(xl) f(xu) < 0, or in other words, f(x) changes 
sign between xl and xu. 
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Step 2

Estimate the root, xm of the equation f (x) = 0 as the
mid-point between xl and xu as

x
x

m =  
 xul +

2
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Step 3

Now check the following

If f(xl) f(xm) < 0, then the root lies 
between xl and xm; then 
xl = xl ; xu = xm.

If f(xl ) f(xm) > 0, then the root lies 
between xm and xu; then 
xl = xm;  xu = xu.

If f(xl) f(xm) = 0; then the root is xm.  
Stop the algorithm if this is true.

 

 xl 

 f(x) 

 xu 
 x 

 xm 

Iteration continues until stopping criteria are met.

Stopping criteria:
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Example 1. Find all the real solutions to the cubic equation . 

There appears to be only one real root which lies in the interval [1,2].
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Use the starting interval   
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δ=− ncrwhere 

Ex. If we want to reduce the error to less than 0.1% of the original interval 
we need N=9 iterations.

Convergence

Solution to f(x) = 0 involves a series of approxiamations.

If                                              

then the numerical method converges (is convergent)
Otherwise diverges ( is divergent )

We are interested in

– Conditions of convergence
– Speed of convergence

Ex. Bisection method is always convergent.
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Order of Convergence

R : order of convergence (R>0)
A : asymptotic error constant (A≠0)
p : root
E: error

R=1 linear convergence
R=2 quadratic convergence
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Ex. bisection method 
has a linear convergenc(R=1,A=0.5):

Matlab Code for bisection method
• function [c,err,yc]=bisect(f,a,b,delta)

%Input - f is the function input as a string 'f'
% - a and b are the left and right endpoints
% - delta is the tolerance
%Output - c is the zero
% - yc= f(c)
% - err is the error estimate for c

ya=feval(f,a);
yb=feval(f,b);
if ya*yb > 0,break,end
max1=1+round((log(b-a)-log(delta))/log(2));
for k=1:max1

c=(a+b)/2;
yc=feval(f,c);
if yc==0

a=c;
b=c;

elseif yb*yc>0
b=c;
yb=yc;

else
a=c;
ya=yc;

end
if b-a < delta, break,end

end

c=(a+b)/2;
err=abs(b-a);
yc=feval(f,c);
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Advantages
• Always convergent
• The root bracket gets halved with each 

iteration - guaranteed.

Drawbacks

•Slow convergence
•If one of the initial guesses is close to the root, 
the convergence is slower

Drawbacks (continued)

• If a function f(x) is such that it just 
touches the x-axis it will be unable to find 
the lower and upper guesses.

 f(x)

 x
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Drawbacks (continued)

Function changes sign but root does not 
exist

 f(x)

 x
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Method of False Position
(Regula Falsi)

⇒

⇓

– Start with an initial interval braketing the root
– Calculate c (*)
–

∗

– Continue iteration until stopping criteria are satisfied
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For the same stopping criteria False position 
converges in 15 steps (bisection 30 steps)
False position’s convergence is faster than linear

Drawback

Stationary end point for the false position method
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Fixed Point Iteration
– Rewrite f(x) = 0 as x=g(x) so that finding the root of f(x) = 0 becomes 

equivalent to finding the fixed point of g(x). 
– Start with initial guess p0

– Iterate according to
Fixed point p is the intersection of 
g(x) and y=x

Note 1: no initial interval – open method

Note 2: Check if the number of iterations has 
exceeded the maximum number of iterations
(additional stopping criteria)

Convergence conditions for the fixed-point 
iterations:

If 

1. g(x) is continuous and g(x) maps [a,b] into [a,b], 
2. g’(x) is continuous on [a,b], and
3. there is a number K<1 such that │g’(x) │≤K for all x in [a,b], 

then

• x=g(x) has excatly one solution (say x*) in [a,b], and
• the fixed-point iteration converges to x*, for any initial guess in [a,b].

Note 1: if 1 and 2 hold, but │ g’(x) │>1 then fixed-point iteration diverges
Note 2: since g(x) is continuous in [a,b] we can also use 

│g’(x*) │≤K<1 and │g’(x*) │>1.
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Convergence: Monotone Increasing
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Divergence: Monotone Increasing

Newton-Raphson Method
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Fast convergence

Cycling divergence
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Convergence rate of Newton-Raphson

• quadratic at a simple root

• linear at a multiple root 

Definition : f(x) has a root of order m at x=p if 
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Advantages

• Converges fast, if it converges
• Requires only one guess

Drawbacks
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Drawbacks (continued)
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Drawbacks (continued)
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Drawbacks (continued)
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( ) 02 2 =+= xxf

Secant Method

)(xf
)f(x -  = xx

i

i
ii ′+1

 

 f(x) 

 f(xi) 

 f(xi-1) 

xi+1 xi-1 xi  X 
  θ 

  
( )[ ]ii xfx ,

1

1 )()(
)(

−

−

−
−

=′
ii

ii
i xx

xfxf
xf

)()(
))((

1

1
1

−

−
+ −

−
−=

ii

iii
ii xfxf

xxxf
xx

Newton’s Method

Approximate the derivative
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Secant Method

)()(
))((

1

1
1

−

−
+ −

−
−=

ii

iii
ii xfxf

xxxf
xx

Similar Triangles
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Oscillating convergence
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Divergence to infinity

Advantages

• Converges fast, if it converges (R=1.618)
• Requires two guesses that do not need to 

bracket the root
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Drawbacks

Division by zero
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