Sources for presentations:

- Textbook
- http://math.fullerton.edu/mathews/numerical.html
- http://numericalmethods.eng.usf.edu
- MIT Open Courseware "Introduction to Numerical Analysis for Engineering"

The Solution of a Nonlinear Equation $f(x)=0$

Example - Square root
$x^{2}-a=0 \Rightarrow x=\sqrt{a}$

Example:

$\frac{\pi\left(d^{3}-3 d^{2} r+4 r^{3} \rho\right)}{3}=0$.

Fgare 2.1 The portion of a sphere of radius r that is to be sub merged to a depth d.

Figure 2.2 The cubic $y=2552-30 d^{2}+d^{3}$

General procedure for solving nonlinear equations/ root finding/finding zero

- Plot the function
- Make an initial guess
- Iteratively refine the initial guess with a root-finding algorithm

Iteration: a process is repeated until an answer is achieved.

Bisection Method

An equation $f(x)=0$, where $f(x)$ is a real continuous function, has at least one root between x_{1} and x_{u} if $f\left(x_{1}\right) f\left(x_{u}\right)<0$.

Step 1

- Choose x_{ℓ} and x_{u} as two guesses for the root such that $f\left(x_{\ell}\right) f\left(x_{u}\right)<0$, or in other words, $f(x)$ changes sign between x_{ℓ} and x_{u}.

Step 2

Estimate the root, x_{m} of the equation $f(x)=0$ as the mid-point between x_{ℓ} and x_{u} as

$$
\mathrm{x}_{\mathrm{m}}=\frac{\mathrm{x}_{\ell}+\mathrm{x}_{\mathrm{u}}}{2}
$$

Step 3

Now check the following
If $f\left(x_{f}\right) f\left(x_{m}\right)<0$, then the root lies between x_{ℓ} and x_{m}; then
$\mathrm{x}_{\ell}=\mathrm{x}_{\ell} ; \quad \mathrm{x}_{\mathrm{u}}=\mathrm{x}_{\mathrm{m}}$.
If $f\left(x_{\ell}\right) f\left(x_{m}\right)>0$, then the root lies
between x_{m} and x_{u}; then $\mathrm{x}_{\ell}=\mathrm{x}_{\mathrm{m}} ; \mathrm{x}_{\mathrm{u}}=\mathrm{x}_{\mathrm{u}}$.

If $f\left(x_{\ell}\right) f\left(x_{m}\right)=0$; then the root is x_{m}. Stop the algorithm if this is true.

Iteration continues until stopping criteria are met.

Stopping criteria:

Use combination of the two criteria

Example 1. Find all the real solutions to the cubic equation $x^{3}+4 x^{2}-10=0$

There appears to be only one real root which lies in the interval $[1,2]$.


```
Use the starting interval [a,b]=[-1,2]
\begin{tabular}{lllll}
k & \(\mathrm{a}_{\mathrm{h}}\) & \(\mathrm{c}_{\mathrm{h}}\) & \(\mathrm{b}_{\mathrm{h}}\) & \(\mathrm{f}\left[\mathrm{c}_{\mathrm{h}}\right]\) \\
0 & -1. & 0.5 & 2. & -6.875 \\
1 & 0.5 & 1.25 & 2. & -1.796875 \\
2 & 1.25 & 1.625 & 2. & 4.653515625 \\
3 & 1.25 & 1.4375 & 1.625 & 1.236083964375 \\
4 & 1.25 & 1.34375 & 1.4375 & -0.350982666015625 \\
5 & 1.34375 & 1.390625 & 1.4375 & 0.4245948791503906 \\
6 & 1.34375 & 1.3671875 & 1.390625 & 0.03235578536987305 \\
7 & 1.34375 & 1.35546875 & 1.3671875 & -0.1604211926460266 \\
8 & 1.35546875 & 1.361328125 & 1.3671875 & -0.06431024521589279 \\
9 & 1.361328125 & 1.3642578125 & 1.3671875 & -0.01604669075459242 \\
10 & 1.3642578125 & 1.36572265625 & 1.3671875 & 0.00813717267010361
\end{tabular}
29 1.36523001268506 1.365230015479026 1.365230018272996 3.409903603923681\times10-*
30 1.36523001268506 1.365230014082044 1.365230015479028 1.103008440139774\times10-6
```

```
    c = 1.365230014082044
```

 c = 1.365230014082044
 AC = \pml.39698\times10-9
f[c] = 1.103008440139774\times10-6

```

Theorem 2.4 (Bisection Theorem). Assume that \(f \in C[a, b]\) and that there exists a number \(r \in[a, b]\) such that \(f(r)=0\). If \(f(a)\) and \(f(b)\) have opposite signs, and \(\left\{c_{n}\right\}_{n=0}^{\infty}\) represents the sequence of midpoints generated by the bisection process of (8) and (9), then
\[
\begin{equation*}
\left|r-c_{n}\right| \leq \frac{b-a}{2^{n+1}} \quad \text { for } n=0,1, \ldots \tag{10}
\end{equation*}
\]


Observe that the successive interval widths form the pattern
\[
\begin{aligned}
& b_{1}-a_{1}=\frac{b_{0}-a_{0}}{2^{1}} \\
& b_{2}-a_{2}=\frac{b_{1}-a_{1}}{2}=\frac{b_{0}-a_{0}}{2^{2}}
\end{aligned}
\]

It is left as an exercise for the reader to use mathematical induction and show that
\[
\begin{equation*}
b_{n}-a_{n}=\frac{b_{0}-a_{0}}{2^{n}} \tag{13}
\end{equation*}
\]

A virtue of the bisection method is that formula (10) provides a predetermined estimate for the accuracy of the computed solution. In Example 2.7 the width of the starting interval was \(b_{0}-a_{0}=2\). Suppose that Table 2.1 were continued to the thirty-first iterate; then, by \((10)\), the error bound would be \(\left|E_{31}\right| \leq(2-0) / 2^{32} \approx\) \(4.656613 \times 10^{-10}\). Hence \(c_{31}\) would be an approximation to \(r\) with nine decimal places of accuracy. The number \(N\) of repeated bisections needed to guarantee that the \(N\) th midpoint \(c_{N}\) is an approximation to a zero and has an error less than the preassigned value \(\delta\) is
\[
\begin{equation*}
N=\operatorname{int}\left(\frac{\ln (b-a)-\ln (\delta)}{\ln (2)}\right) . \tag{15}
\end{equation*}
\]
where
\[
\left|r-c_{n}\right|=\delta
\]

Ex. If we want to reduce the error to less than \(0.1 \%\) of the original interval we need \(\mathrm{N}=9\) iterations.

\section*{Convergence}

Solution to \(\mathrm{f}(\mathrm{x})=0\) involves a series of approxiamations.
If \(\quad x_{0}, x_{1}, \ldots x_{n} \rightarrow x^{e}, \quad n \rightarrow \infty\)
then the numerical method converges (is convergent) Otherwise diverges ( is divergent )
\(>\) We are interested in
- Conditions of convergence
- Speed of convergence

\section*{Ex. Bisection method is always convergent.}

\section*{Order of Convergence}
\[
\lim _{n \rightarrow \infty} \frac{\left|p-p_{n+1}\right|}{\left|p-p_{n}\right|^{R}}=\lim _{n \rightarrow \infty} \frac{\left|E_{r+1}\right|}{\left|E_{n}\right|^{R}}=A
\]
\(R\) : order of convergence ( \(R>0\) )
\(A\) : asymptotic error constant ( \(A \neq 0\) )
p: root
E: error

\section*{Ex. bisection method}
has a linear convergenc \((R=1, A=0.5)\) :

\section*{\(R=1\) linear convergence} \(R=2\) quadratic convergence

Matlab Code for bisection method
- function [c,err,yc]=bisect(f,a,b,delta)
\%Input - \(f\) is the function input as a string ' \(f\) '
\(\% \quad-a\) and \(b\) are the left and right endpoints
\(\% \quad\) - delta is the tolerance
\%Output - c is the zero
\% - yc=f(c)
\(\% \quad\) - err is the error estimate for c
ya=feval(f,a);
yb=feval(f,b);
if ya*yb > 0,break,end
\(\max 1=1+\) round \(((\log (b-a)-\log (d e l t a)) / \log (2))\);
for \(k=1\) :max 1
\(\mathrm{c}=(\mathrm{a}+\mathrm{b}) / 2\);
yc=feval(f,c);
if \(\mathrm{yc}==0\)
\(a=c\);
elseif \(\mathbf{y b} \mathbf{b}^{*} \mathrm{yc}>0\)
\(\mathrm{b}=\mathrm{c}\);
\(y b=y c\);
else
\(\mathrm{a}=\mathrm{c}\);
уа=ус;
end
if \(b-a<d e l t a\), break, end
end
c=(a+b)/2;
err=abs(b-a); yc=feval(f,c);

\section*{Advantages}
- Always convergent
- The root bracket gets halved with each iteration - guaranteed.

\section*{Drawbacks}
-Slow convergence
-If one of the initial guesses is close to the root, the convergence is slower

\section*{Drawbacks (continued)}
- If a function \(f(x)\) is such that it just touches the \(x\)-axis it will be unable to find the lower and upper guesses.


\section*{Drawbacks (continued)}
- Function changes sign but root does not exist



For the same stopping criteria False position
\(\mathrm{c}=1.365230010769655\)
converges in 15 steps (bisection 30 steps)
\(f[c]=-4.366872907723973 \times 10^{-*}\)
False position's convergence is faster than linear

\section*{Drawback}


Stationary end point for the false position method

\section*{Fixed Point Iteration}
- Rewrite \(f(x)=0\) as \(x=g(x)\) so that finding the root of \(f(x)=0\) becomes equivalent to finding the fixed point of \(g(x)\).
- Start with initial guess \(p_{0}\)
- Iterate according to
\[
\begin{gathered}
\mathrm{p}_{\mathrm{l}}=g\left(\mathrm{p}_{0}\right) \\
\mathrm{p}_{\mathrm{L}}=g\left(\mathrm{p}_{\mathrm{l}}\right) \\
\mathrm{p}_{\mathrm{kr}}=g\left(\mathrm{p}_{\mathrm{k}-\mathrm{l}}\right) \\
\mathrm{p}_{\mathrm{k}+\boldsymbol{l}}=g\left(\mathrm{p}_{\mathrm{k}}\right)
\end{gathered}
\]

Note 1: no initial interval - open method
Note 2: Check if the number of iterations has

Fixed point \(p\) is the intersection of \(g(x)\) and \(y=x\)
 exceeded the maximum number of iterations (additional stopping criteria)

\section*{Convergence conditions for the fixed-point iterations:}

If
1. \(g(x)\) is continuous and \(g(x)\) maps \([a, b]\) into \([a, b]\),
2. \(g^{\prime}(x)\) is continuous on \([a, b]\), and
3. there is a number \(K<1\) such that \(\left|g^{\prime}(x)\right| \leq K\) for all \(x\) in \([a, b]\),
then
- \(\quad x=g(x)\) has excatly one solution (say \(x^{*}\) ) in [a,b], and
- the fixed-point iteration converges to \(x^{*}\), for any initial guess in [a,b].

Note 1: if 1 and 2 hold, but \(\left|g^{\prime}(x)\right|>1\) then fixed-point iteration diverges Note 2: since \(g(x)\) is continuous in [a,b] we can also use
\[
\left|g^{\prime}\left(x^{*}\right)\right| \leq K<1 \text { and }\left|g^{\prime}\left(x^{*}\right)\right|>1 .
\]

Example 2.4. Consider the iteration \(p_{n+1}=g\left(p_{n}\right)\) when the function \(g(x)=1+x-x^{2} / 4\) is used. The fixed points can be found by solving the equation \(x=g(x)\). The two solutions (fixed points of \(g\) ) are \(x=-2\) and \(x=2\). The derivative of the function is \(g^{\prime}(x)=1-x / 2\), and there are only two cases to consider.
\begin{tabular}{rlrl} 
Case \((i):\) & & \(p\) & \(=-2\) \\
Start with & \(p_{0}\) & \(=-2.05\) \\
then get & & \(p_{1}\) & \(=-2.100625\) \\
& & \(p_{2}\) & \(=-2.20378135\) \\
& & \(p_{3}\) & \(=-2.41794441\) \\
& & & \\
& & \(\lim _{n \rightarrow \infty} p_{n}\) & \(=-\infty\).
\end{tabular}

Since \(\left|g^{\prime}(x)\right|>\frac{3}{2}\) on \([-3,-1]\), by Theorem 2.3 , the sequence will not converge to \(P=-2\).
\[
\begin{array}{rlrl}
\text { Case }(i i): & & p & =2 \\
\text { Start with } & p_{0} & =1.6 \\
\text { then get } & p_{1} & =1.96 \\
& & p_{2} & =1.9996 \\
p_{3} & =1.99999996 \\
& & & \\
& & & \\
\lim _{n \rightarrow \infty} & p_{n} & =2 .
\end{array}
\]

Since \(\left|g^{\prime}(x)\right|<\frac{1}{2}\) on [1,3], by Theorem 2.3 , the sequence will converge to \(P=2\).



\section*{Convergence: Monotone Increasing}


\section*{Divergence: Monotone Increasing}


Newton-Raphson Method


\section*{Fast convergence}


\section*{Cycling divergence}



\section*{Convergence rate of Newton-Raphson}
- quadratic at a simple root
\[
\left|E_{\mathrm{k}+1}\right|=\frac{\left|\mathrm{f}^{\prime \prime}(\mathrm{p})\right|}{2\left|\mathrm{f}^{\prime}(\mathrm{p})\right|}\left(\left|\mathrm{E}_{\mathrm{h}}\right|\right)^{z}
\]
- linear at a multiple root
\[
\left|\mathrm{E}_{\mathbf{k + 1}}\right| \approx \frac{\underline{m}-1}{\text { Ii }}\left|\mathrm{E}_{\mathrm{k}}\right|
\]

Definition : \(\mathrm{f}(\mathrm{x})\) has a root of order m at \(\mathrm{x}=\mathrm{p}\) if
\(f(p)=0, f^{\prime}(p)=0, f^{\prime \prime}(p)=0, \ldots, f^{(m-1)}(p)=0, f^{(m)}(p) \neq 0\)

\section*{Advantages}
- Converges fast, if it converges
- Requires only one guess


\section*{Drawbacks (continued)}


Division by zero

\section*{Drawbacks (continued)}


Root Jumping

\section*{Drawbacks (continued)}


Oscillations near Local Maxima or Minima


\section*{Secant Method}


Similar Triangles
\[
\begin{gathered}
\frac{A B}{A E}=\frac{D C}{D E} \\
\frac{f\left(x_{i}\right)}{x_{i}-x_{i+1}}=\frac{f\left(x_{i-1}\right)}{x_{i-1}-x_{i+1}} \\
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)\left(x_{i}-x_{i-1}\right)}{f\left(x_{i}\right)-f\left(x_{i-1}\right)}
\end{gathered}
\]

\section*{Oscillating convergence}


\section*{Divergence to infinity}


\section*{Advantages}
- Converges fast, if it converges ( \(\mathrm{R}=1.618\) )
- Requires two guesses that do not need to bracket the root
(```

