Numerical Integration

Quadrature

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \sum_{k=0}^{M} w_{k} f\left(x_{k}\right)=w_{0} f\left(x_{0}\right)+w_{1} f\left(x_{1}\right)+\cdots+w_{M} f\left(x_{M}\right) \\
& +E[f] \\
a=x_{0}<x_{1}< & \cdots<x_{M}=b
\end{aligned}
$$

is called a numerical integration or quadrature formula. The term $E[f]$ is called the truncation error for integration. The values $\left\{x_{k}\right\}_{k=0}^{M}$ are called the quadrature nodes, and $\left\{w_{k}\right\}_{k=0}^{M}$ are called the weights.

Definition 7.2. The degree of precision of a quadrature formula is the positive integer n such that $E\left[P_{i}\right]=0$ for all polynomials $P_{i}(x)$ of degree $i \leq n$, but for which $E\left[P_{n+1}\right] \neq 0$ for some polynomial $P_{n+1}(x)$ of degree $n+1$.

$$
E[f]=K f^{(n+1)}(c)
$$

$$
\begin{array}{ll}
\text { I ntegration } & \text { The process of measuring } \\
\text { the area under a curve. }
\end{array}
$$

$$
\begin{aligned}
& I=\int_{a}^{b} f(x) d x \\
& \text { ere: } \\
& \text { is the integrand } \\
& \text { lower limit of integration } \\
& \text { upper limit of integration }
\end{aligned}
$$

Approximate $f(x)$ by a straight line

$$
\int_{x_{0}}^{x_{1}} f(x) d x \approx \frac{h}{2}\left(f_{0}+f_{1}\right) \quad \text { (trapezoidal rule) }
$$

The trapezoidal rule has degree of precision $n=1$

$$
\int_{x_{0}}^{x_{1}} f(x) d x=\frac{h}{2}\left(f_{0}+f_{1}\right)-\frac{h^{3}}{12} f^{(2)}(c)
$$

Derivation of trapezoidal rule from Lagrange Polynomial

$$
\begin{aligned}
& f(x) \approx P_{M}(x)=\sum_{k=0}^{M} f_{k} L_{M, k}(x), \\
& \int_{x_{0}}^{x_{M}} f(x) d x \approx \int_{x_{0}}^{x_{M}} P_{M}(x) d x
\end{aligned}
$$

$P_{1}(x)=y_{0} \frac{x-x_{1}}{x_{0}-x_{1}}+y_{1} \frac{x-x_{0}}{x_{1}-x_{0}} \quad y_{k}=f\left(x_{k}\right)$
$E_{1}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) f^{(2)}(c)}{2!}$

Integrate P_{1} to get trapezoidal rule
Integrate E_{1} to get the truncation error/degree of precision

Approximate $f(x)$ by a quadratic curve

$$
\int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right) \quad \text { (Simpson's rule) }
$$

Simpson's rule has degree of precision $n=3$

$$
\int_{x_{0}}^{x_{2}} f(x) d x=\frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right)-\frac{h^{5}}{90} f^{(4)}(c)
$$

Derivation of Simpson's rule from Lagrange Polynomial

$$
\begin{aligned}
& f(x) \approx P_{M}(x)=\sum_{k=0}^{M} f_{k} L_{M, k}(x), \\
& \int_{x_{0}}^{x_{M}} f(x) d x \approx \int_{x_{0}}^{x_{M}} P_{M}(x) d x
\end{aligned}
$$

$$
P_{2}(x)=f_{0} \frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)}+f_{1} \frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}+f_{2} \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)}
$$

$$
E_{N}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{N}\right) f^{(N+1)}(c)}{(N+1)!}
$$

Integrate P_{2} to get Simpson's rule
Integrate E_{2} to get the truncation error/degree of precision

Approximate $f(x)$ by a cubic curve
$\int_{x_{0}}^{x_{3}} f(x) d x \approx \frac{3 h}{8}\left(f_{0}+3 f_{1}+3 f_{2}+f_{3}\right) \quad$ (Simpson's $\frac{3}{8}$ rule)

Simpson's $\frac{3}{8}$ rule has degree of precision $n=3$

$$
\int_{x_{0}}^{x_{3}} f(x) d x=\frac{3 h}{8}\left(f_{0}+3 f_{1}+3 f_{2}+f_{3}\right)-\frac{3 h^{5}}{80} f^{(4)}(c)
$$

Example 7.2. Consider the integration of the function $f(x)=1+e^{-x} \sin (4 x)$ over the fixed interval $[a, b]=[0,1]$. Apply the various formulas (4) through (7).

For the trapezoidal rule, $h=1$ and

$$
\begin{aligned}
& \int_{x_{0}}^{x_{1}} f(x) d x \approx \frac{h}{2}\left(f_{0}+f_{1}\right) \\
& \int_{0}^{1} f(x) d x \approx \frac{1}{2}(f(0)+f(1))=0.86079
\end{aligned}
$$

For Simpson's rule, $h=1 / 2$, and we get

$$
\begin{gathered}
\int_{x_{0}}^{x_{2}} f(x) d x \approx \frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right) \\
\int_{0}^{1} f(x) d x \approx \frac{1 / 2}{3}\left(f(0)+4 f\left(\frac{1}{2}\right)+f(1)=1.32128\right.
\end{gathered}
$$

For a fair comparison of various methods use the same number of function evaluations in each method.
E.g. Five evaluations in [x_{0}, x_{4}]

$$
\int_{x_{0}}^{x_{4}} f(x) d x=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{3}} f(x) d x+\int_{x_{3}}^{x_{4}} f(x) d x
$$

$$
\begin{equation*}
\approx \frac{h}{2}\left(f_{0}+f_{1}\right)+\frac{h}{2}\left(f_{1}+f_{2}\right)+\frac{h}{2}\left(f_{2}+f_{3}\right)+\frac{h}{2}\left(f_{3}+f_{4}\right) \tag{17}
\end{equation*}
$$

$$
=\frac{\grave{h}}{2}\left(f_{0}+2 f_{1}+2 f_{2}+2 f_{3}+f_{4}\right) . \quad \text { composite trapezoidal rule }
$$

$$
\int_{x_{0}}^{x_{4}} f(x) d x=\int_{x_{0}}^{x_{2}} f(x) d x+\int_{x_{2}}^{x_{4}} f(x) d x
$$

(18)

$$
\begin{aligned}
& \approx \frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right)+\frac{h}{3}\left(f_{2}+4 f_{3}+f_{4}\right) \\
& =\frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}+f_{4}\right)
\end{aligned}
$$

composite Simpson's rule

Example 7.3. Consider the integration of the function $f(x)=1+e^{-x} \sin (4 x)$ over $[a, b]=[0,1]$. Use exactly five function evaluations and compare the results from the composite trapezoidal rule, composite Simpson rule,

The uniform step size is $h=1 / 4$. The composite trapezoidal rule (17) produces

$$
\int_{0}^{1} f(x) d x \approx \frac{1 / 4}{2}\left(f(0)+2 f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+2 f\left(\frac{3}{4}\right)+f(1)\right)=1.28358
$$

Using the composite Simpson's rule (18), we get

$$
\int_{0}^{1} f(x) d x \approx \frac{1 / 4}{3}\left(f(0)+4 f\left(\frac{1}{4}\right)+2 f\left(\frac{1}{2}\right)+4 f\left(\frac{3}{4}\right)+f(1)\right)=1.30938
$$

Figure 7.4 (a) The composite trapezoidal rule yields the approximation 1.28358 . (b) The composite Simpson rule yields the approximation 1.30938 .

Theorem 7.2 (Composite Trapezoidal Rule). Suppose that the interval $[a, b]$ is subdivided into M subintervals $\left[x_{k}, x_{k+1}\right]$ of width $h=(b-a) / M$ by using the equally spaced nodes $x_{k}=a+k h$, for $k=0,1, \ldots, M$. The composite trapezoidal rule for M subintervals can be expressed

$$
\begin{gathered}
\int_{a}^{b} f(x) d x \approx T(f, h) \\
T(f, h)=\frac{h}{2}\left(f_{0}+2 f_{1}+2 f_{2}+2 f_{3}+\cdots+2 f_{M-2}+2 f_{M-1}+f_{M}\right) \\
T(f, h)=\frac{h}{2} \sum_{k=1}^{M}\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right)
\end{gathered}
$$

Trapezoidal Rule: Error Analysis

We first determine the error term when the rule is applied over $\left[x_{0}, x_{1}\right]$.
(10) $\quad \int_{x_{0}}^{x_{1}} f(x) d x=\int_{x_{0}}^{x_{1}} P_{1}(x) d x+\int_{x_{0}}^{x_{1}} \frac{\left(x-x_{0}\right)\left(x-x_{1}\right) f^{(2)}(c(x))}{2!} d x$.

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} f(x) d x=\frac{h}{2}\left(f_{0}+f_{1}\right)+f^{(2)}\left(c_{1}\right) \int_{x_{0}}^{x_{1}} \frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{2!} d x . \tag{11}
\end{equation*}
$$

Use the change of variable $x=x_{0}+h t$ in the integral on the right side of (11):

$$
\int_{x_{0}}^{x_{1}} f(x) d x=\frac{h}{2}\left(f_{0}+f_{1}\right)+\frac{f^{(2)}\left(c_{1}\right)}{2} \int_{0}^{1} h(t-0) h(t-1) h d t
$$

(12)

$$
=\frac{h}{2}\left(f_{0}+f_{1}\right)+\frac{f^{(2)}\left(c_{1}\right) h^{3}}{2} \int_{0}^{1}\left(t^{2}-t\right) d t
$$

$$
=\frac{h}{2}\left(f_{0}+f_{1}\right)-\frac{f^{(2)}\left(c_{1}\right) h^{3}}{12} .
$$

Now we are ready to add up the error terms for all of the intervals $\left[x_{k}, x_{k+1}\right]$:

$$
\begin{align*}
\int_{a}^{b} f(x) d x & =\sum_{k=1}^{M} \int_{x_{k-1}}^{x_{k}} f(x) d x \\
& =\sum_{k=1}^{M} \frac{h}{2}\left(f\left(x_{k-1}\right)+f\left(x_{k}\right)\right)-\frac{h^{3}}{12} \sum_{k=1}^{M} f^{(2)}\left(c_{k}\right) \tag{13}
\end{align*}
$$

The first sum is the composite trapezoidal rule $T(f, h)$. In the second term, one factor of h is replaced with its equivalent $h=(b-a) / M$, and the result is

$$
\int_{a}^{b} f(x) d x=T(f, h)-\frac{(b-a) h^{2}}{12}\left(\frac{1}{M} \sum_{k=1}^{M} f^{(2)}\left(c_{k}\right)\right)
$$

The term in parentheses can be recognized as an average of values for the second derivative and hence is replaced by $f^{(2)}(c)$. Therefore, we have established that

$$
\int_{a}^{b} f(x) d x=T(f, h)-\frac{(b-a) f^{(2)}(c) h^{2}}{12}
$$

Example 7.7. Consider $f(x)=2+\sin (2 \sqrt{x})$. Investigate the error when the composite trapezoidal rule is used over $[1,6]$ and the number of subintervals is $10,20,40,80$, and 160 .

Table 7.2 Composite Trapezoidal Rule for $f(x)=2+\sin (2 \sqrt{x})$ over $[1,6]$

M	h	$T(f, h)$	$E_{T}(f, h)=O\left(h^{2}\right)$
10	0.5	8.19385457	-0.01037540
20	0.25	8.18604926	-0.00257006
40	0.125	8.18412019	-0.00064098
80	0.0625	8.18363936	-0.00016015
160	0.03125	8.18351924	-0.00004003

Theorem 7.3 (Composite Simpson Rule). Suppose that $[a ; b]$ is subdivided into $2 M$ subintervals $\left[x_{k}, x_{k+1}\right.$] of equal width $h=(b-a) /(2 M)$ by using $x_{k}=a+k h$ for $k=0,1, \ldots, 2 M$. The composite Simpson rule for $2 M$ subintervals can be expressed

$$
\begin{aligned}
\int_{a}^{b} f(x) d x \approx S(f, h)= & \frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+4 f_{3}\right. \\
& \left.+\cdots+2 f_{2 M-2}+4 f_{2 M-1}+f_{2 M}\right) \\
= & \frac{h}{3} \sum_{k=1}^{M}\left(f\left(x_{2 k-2}\right)+4 f\left(x_{2 k-1}\right)+f\left(x_{2 k}\right)\right)
\end{aligned}
$$

Composite Simpson's Rule

Then

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & 2 h\left[\frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{6}\right]+\ldots \\
& +2 h\left[\frac{f\left(x_{2}\right)+4 f\left(x_{3}\right)+f\left(x_{4}\right)}{6}\right]+\ldots \\
& +2 h\left[\frac{f\left(x_{2 M-2}\right)+4 f\left(x_{2 M-1}\right)+f\left(x_{2 M}\right)}{6}\right] \\
& =\frac{h}{3}\left[f\left(x_{0}\right)+4\left\{f\left(x_{1}\right)+f\left(x_{3}\right)+\ldots+f\left(x_{2 M-1}\right)\right\}+\ldots\right] \\
\begin{aligned}
b \\
a
\end{aligned} f(x) d x & \left.\left.\ldots+2\left\{f\left(x_{2}\right)+f\left(x_{4}\right)+\ldots+f\left(x_{2 M-2}\right)\right\}+f\left(x_{2 M}\right)\right\}\right] \\
= & \frac{h}{3}\left[\sum_{i=1}^{M}\left(f\left(x_{2 i-2}\right)+4 f\left(x_{2 i-1}\right)+f\left(x_{2 i}\right)\right)\right]
\end{aligned}
$$

Simpson's Rule: Error Analysis

$$
\begin{aligned}
& \quad \int_{a}^{b} f(x) d x=S(f, h)+E_{S}(f, h) \\
& S(f, h)=\frac{h}{3}(f(a)+f(b))+\frac{2 h}{3} \sum_{k=1}^{M-1} f\left(x_{2 k}\right)+\frac{4 h}{3} \sum_{k=1}^{M} f\left(x_{2 k-1}\right) \\
& E_{S}(f, h)=\frac{-(b-a) f^{(4)}(c) h^{4}}{180}
\end{aligned}
$$

Table 7.3 Composite Simpson Rule for $f(x)=2+\sin (2 \sqrt{x})$ over $[1,6]$

M	h	$S(f, h)$	$E_{S}(f, h)=O\left(h^{4}\right)$
5	0.5	8.18301549	0.00046371
10	0.25	8.18344750	0.00003171
20	0.125	8.18347717	0.00000204
40	0.0625	8.18347908	0.00000013
80	0.03125	8.18347920	0.00000001

Recursive Rules

Theorem 7.4 (Successive Trapezoidal Rules). Suppose that $J \geq 1$ and the points $\left\{x_{k}=a+k h\right\}$ subdivide $[a, b]$ into $2^{J}=2 M$ subintervals of equal width $h=$ $(b-a) / 2^{J}$. The trapezoidal rules $T(f, h)$ and $T(f, 2 h)$ obey the relationship
(1)

$$
T(f, h)=\frac{T(f, 2 h)}{2}+h \sum_{k=1}^{M} f\left(x_{2 k-1}\right)
$$

define $T(J)=T(f, h)$,
$T(J)=\frac{T(J-1)}{2}+h \sum_{k=1}^{M} f\left(x_{2 k-1}\right)$

(c)

(b)

(d)

Figure 7.8 (a) $T(0)$ is the area under $2^{0}=1$ trapezoid. (b) $T(1)$ is the area under $2^{1}=2$ trapezoids. (c) $T(2)$ is the area under $2^{2}=4$ trapezoids. (d) $T(3)$ is the area under $2^{3}=8$ trapezoids.

Proof. For the even nodes $x_{0}<x_{2}<\cdots<x_{2 M-2}<x_{2 M}$, we use the trapezoidal rule with step size $2 h$:
(3) $T(J-1)=\frac{2 h}{2}\left(f_{0}+2 f_{2}+2 f_{4}+\cdots+2 f_{2 M-4}+2 f_{2 M-2}+f_{2 M}\right)$.

For all of the nodes $x_{0}<x_{1}<x_{2}<\cdots<x_{2 M-1}<x_{2 M}$, we use the trapezoidal rule with step size h :
(4) $\quad T(J)=\frac{h}{2}\left(f_{0}+2 f_{1}+2 f_{2}+\cdots+2 f_{2 M-2}+2 f_{2 M-1}+f_{2 M}\right)$.

Collecting the even and odd subscripts in (4) yields
(5) $\quad T(J)=\frac{h}{2}\left(f_{0}+2 f_{2}+\cdots+2 f_{2 M-2}+f_{2 M}\right)+h \sum_{k=1}^{M} f_{2 k-1}$.

Substituting (3) into (5) results in $T(J)=T(J-1) / 2+h \sum_{k=1}^{M} f_{2 k-1}$, and the proof of the theorem is complete.

Example 7.11. Use the sequential trapezoidal rule to compute the approximations $T(0)$, $T(1), T(2)$, and $T(3)$ for the integral $\int_{1}^{5} d x / x=\ln (5)-\ln (1)=1.609437912$.

Table 7.4 shows the nine values required to compute T (3) and the midpoints required to compute $T(1), T(2)$, and $T(3)$. Details for obtaining the results are as follows:

$$
\begin{aligned}
& \text { When } h=4: \quad T(0)=\frac{4}{2}(1.000000+0.200000)=2.400000 . \\
& \text { When } h=2: \quad T(1)=\frac{T(0)}{2}+2(0.333333) \\
& =1.200000+0.666666=1.866666 . \\
& \text { When } h=1: \quad T(2)=\frac{T(1)}{2}+1(0.500000+0.250000) \\
& =0.933333+0.750000=1.683333 . \\
& \text { When } h=\frac{1}{2}: \quad T(3)=\frac{T(2)}{2}+\frac{1}{2}(0.666667+0.400000 \\
& +0.285714+0.222222) \\
& =0.841667+0.787302=1.628968 \text {. }
\end{aligned}
$$

Theorem 7.5 (Recursive Simpson Rules). Suppose that $\{T(J)\}$ is the sequence of trapezoidal rules generated by Corollary 7.4. If $J \geq 1$ and $S(J)$ is Simpson's rule for 2^{J} subintervals of $[a, b]$, then $S(J)$ and the trapezoidal rules $T(J-1)$ and $T(J)$ obey the relationship

$$
\begin{equation*}
S(J)=\frac{4 T(J)-T(J-1)}{3} \quad \text { for } J=1,2, \ldots \tag{7}
\end{equation*}
$$

Proof. The trapezoidal rule $T(J)$ with step size h yields the approximation
(8) $\quad \int_{a}^{b} f(x) d x \approx \frac{h}{2}\left(f_{0}+2 f_{1}+2 f_{2}+\cdots+2 f_{2 M-2}+2 f_{2 M-1}+f_{2 M}\right)$

$$
=T(J)
$$

The trapezoidal rule $T(J-1)$ with step size $2 h$ produces
(9) $\quad \int_{a}^{b} f(x) d x \approx h\left(f_{0}+2 f_{2}+\cdots+2 f_{2 M-2}+f_{2 M}\right)=T(J-1)$.

Multiplying relation (8) by 4 yields

Now subtract (9) from (10) and the result is
(11) $3 \int_{a}^{b} f(x) d x \approx h\left(f_{0}+4 f_{1}+2 f_{2}+\cdots+2 f_{2 M-2}+4 f_{2 M-1}+f_{2 M}\right)$

$$
=4 T(J)-T(J-1) .
$$

This can be rearranged to obtain

$$
\begin{align*}
\int_{a}^{b} f(x) d x & \approx \frac{h}{3}\left(f_{0}+4 f_{1}+2 f_{2}+\cdots+2 f_{2 M-2}+4 f_{2 M-1}+f_{2 M}\right) \tag{12}\\
& =\frac{4 T(J)-T(J-1)}{3}
\end{align*}
$$

The middle term in (12) is Simpson's rule $S(J)=S(f, h)$ and hence the theorem is proved.

Example 7.12. Use the sequential Simpson rule to compute the approximations $S(1)$, $S(2)$, and $S(3)$ for the integral of Example 7.11.

Using the results of Example 7.11 and formula (7) with $J=1,2$, and 3 , we compute

$$
\begin{aligned}
& S(1)=\frac{4 T(1)-T(0)}{3}=\frac{4(1.866666)-2.400000}{3}=1.688888, \\
& S(2)=\frac{4 T(2)-T(1)}{3}=\frac{4(1.683333)-1.866666}{3}=1.622222, \\
& S(3)=\frac{4 T(3)-T(2)}{3}=\frac{4(1.628968)-1.683333}{3}=1.610846 .
\end{aligned}
$$

Romberg Integration

$$
S(J)=\frac{4 T(J)-T(J-1)}{3} \quad \text { for } J=1,2, \ldots
$$

Definition 7.4. Define the sequence $\{R(J, K): J \geq K\}_{J=0}^{\infty}$ of quadrature formulas for $f(x)$ over $[a, b]$ as follows
(31)

$$
\begin{array}{ll}
R(J, 0)=T(J) & \text { for } J \geq 0, \text { is the sequential trapezoidal rule. } \\
R(J, 1)=S(J) & \text { for } J \geq 1, \text { is the sequential Simpson rule. }
\end{array}
$$

$$
R(J, 1)=\frac{4^{1} R(J, 0)-R(J-1,0)}{4^{1}-1} \quad \text { for } J \geq 1
$$

recall that

$$
\int_{a}^{b} f(x) d x=T(f, h)+\boldsymbol{O}\left(h^{2}\right)
$$

$$
\int_{a}^{b} f(x) d x=S(f, h)+\boldsymbol{O}\left(h^{4}\right)
$$

Romberg Integration

The pattern for integration rules of increasing accuracy is of the form:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =T(f, h)+O\left(h^{2}\right), & R(J, 0)=T(J) \\
\int_{a}^{b} f(x) d x & =S(f, h)+O\left(h^{4}\right), & R(J, 1)=S(J) \\
\int_{a}^{b} f(x) d x & =B(f, h)+O\left(h^{6}\right) . & R(J, 2)=B(J) \\
R(J, 1) & =\frac{4^{1} R(J, 0)-R(J-1,0)}{4^{1}-1} & \text { for } J \geq 1 \\
R(J, 2) & =\frac{4^{2} R(J, 1)-R(J-1,1)}{4^{2}-1} & \text { for } J \geq 2, \\
\cdots(J, K) & =\frac{4^{K} R(J, K-1)-R(J-1, K-1)}{4^{K}-1} & \text { for } J \geq K .
\end{aligned}
$$

Romberg Integration relies on Richardson's extrapolation

(Precision of Romberg Integration). $\int_{a}^{b} f(x) d x=R(J, K)+\boldsymbol{O}\left(h^{2 K+2}\right)$,

Lemma 7.1 (Richardson's Improvement for Romberg Integration). Given two approximations $R(2 h, K-1)$ and $R(h, K-1)$ for the quantity Q that satisfy

$$
\begin{equation*}
Q=R(h, K-1)+c_{1} h^{2 K}+c_{2} h^{2 K+2}+\cdots \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=R(2 h, K-1)+c_{1} 4^{K} h^{2 K}+c_{2} 4^{K+1} h^{2 K+2}+\cdots \tag{29}
\end{equation*}
$$

an improved approximation has the form
(30) $Q=\frac{4^{K} R(h, K-1)-R(2 h, K-1)}{4^{K}-1}+\boldsymbol{O}\left(h^{2 K+2}\right)$.

Start with $T(f, 2 h)$ and $T(f, h)$

(20)

$$
\int_{a}^{b} f(x) d x=T(f, 2 h)+a_{1} 4 h^{2}+a_{2} 16 h^{4}+a_{3} 64 h^{6}+\cdots
$$

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=T(f, h)+a_{1} h^{2}+a_{2} h^{4}+a_{3} h^{6}+\cdots \tag{21}
\end{equation*}
$$

Multiply equation (21) by 4 and obtain

$$
\begin{equation*}
4 \int_{a}^{b} f(x) d x=4 T(f, h)+a_{1} 4 h^{2}+a_{2} 4 h^{4}+a_{3} 4 h^{6}+\cdots \tag{22}
\end{equation*}
$$

Eliminate a_{1} by subtracting (20) from (22). The result is
(23) $3 \int_{a}^{b} f(x) d x=4 T(f, h)-T(f, 2 h)-a_{2} 12 h^{4}-a_{3} 60 h^{6}-\cdots$.

Now divide equation (23) by 3 and rename the coefficients in the series:

$$
\begin{gather*}
\int_{a}^{b} f(x) d x=\frac{4 T(f, h)-T(f, 2 h)}{3}+b_{1} h^{4}+b_{2} h^{6}+\cdots \tag{24}\\
\Downarrow \\
S(f, h)
\end{gather*}
$$

Table 7.5 Romberg Integration Tableau

	$R(J, 0)$ Trapezoidal rule	$R(J, 1)$ Simpson's rule	$R(J, 2)$ Boole's rule	$R(J, 3)$ Third improvement	$R(J, 4)$ Fourth improvement
J	$R(0,0)$				
1	$R(1,0)$				
2	$R(2,0)$				
3	$R(1,1)$				
4	$R(4,0)$				

Example 7.14. Use Romberg integration to find approximations for the definite integral

$$
\int_{0}^{\pi / 2}\left(x^{2}+x+1\right) \cos (x) d x=-2+\frac{\pi}{2}+\frac{\pi^{2}}{4}=2.038197427067 \ldots
$$

Table 7.5 Romberg Integration Tableau

	$R(J, 0)$ Trapezoidal rule	$R(J, 1)$ Simpson's rule	$R(J, 2)$ Boole's rule	$R(J, 3)$ Third improvement	$R(J, 4)$ Fourth improvement
0	$R(0,0)$				
1	$R(1,0)$				
2	$R(2,0)$				
3	$R(3,0)$				
4	$R(4,0)$				

Table 7.6 Romberg Integration Tableau for Example 7.14

	$R(J, 0)$ Trapezoidal rule	$R(J, 1)$ Simpson's rule	$R(J, 2)$ Boole's rule	$R(J, 3)$ Third improvement
0	0.785398163397			
1	1.726812656758	2.040617487878		
2	1.960534166564	2.038441336499	2.038296259740	
3	2.018793948078	2.038213875249	2.038198711166	2.038197162776
4	2.033347341805	2.038198473047	2.038197446234	2.038197426156
5	2.036984954990	2.038197492719	2.038197427363	2.038197427064

Example 7.14. Use Romberg integration to find approximations for the definite integral
$\int_{0}^{\pi / 2}\left(x^{2}+x+1\right) \cos (x) d x=-2+\frac{\pi}{2}+\frac{\pi^{2}}{4}=2.038197427067 \ldots$
Table 7.6 Romberg Integration Tableau for Example 7.14

	$R(J, 0)$ Trapezoidal rule	$R(J, 1)$ Simpson's rule	$R(J, 2)$ Boole's rule	$R(J, 3)$ Third improvement
0	0.785398163397			
1	1.726812656758	2.040617487878		
2	1.960534166564	2.038441336499	2.038296259740	
3	2.018793948078	2.038213875249	2.038198711166	2.038197162776
4	2.033347341805	2.038198473047	2.038197446234	2.038197426156
5	2.036984954990	2.038197492719	2.038197427363	2.038197427064

Table 7.7 Romberg Error Tableau for Example 7.14

J	h	$E(J, 0)=O\left(h^{2}\right)$	$E(J, 1)=O\left(h^{4}\right)$	$E(J, 2)=O\left(h^{6}\right)$	$E(J, 3)=O\left(h^{8}\right)$
0	$b-a$	-1.252799263670			
1	$\frac{b-a}{2}$	-0.311384770309	0.002420060811		
2	$\frac{b-a}{4}$	-0.077663260503	0.000243909432	0.000098832673	
3	$\frac{b-a}{8}$	-0.019403478989	0.000016448182	0.000001284099	-0.000000264291
4	$\frac{b-a}{16}$	-0.004850085262	0.000001045980	0.000000019167	-0.000000000912
5	$\frac{b-a}{32}$	-0.001212472077	0.000000065651	0.000000000296	-0.000000000003

Gauss Quadrature

We wish to find the area under the curve

$$
y=f(x), \quad-1 \leq x \leq 1 .
$$

What method gives the best answer if only two function evaluations are to be made?

(a)

(b)

Figure 7.10 (a) Trapezoidal approximation using the abscissas -1 and 1. (b) Trapezoidal approximation using the abscissas x_{1} and x_{2}.

Basis of the Gaussian Quadrature Rule

Previously, the Trapezoidal Rule can be developed by the method of undetermined coefficients as:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \cong c_{1} f(a)+c_{2} f(b) \\
& =\frac{b-a}{2} f(a)+\frac{b-a}{2} f(b)
\end{aligned}
$$

Basis of the Gaussian Quadrature Rule

The two-point Gauss Quadrature Rule is an extension of the Trapezoidal Rule approximation where the arguments of the function are not predetermined as a and b but as unknowns x_{1} and x_{2}. In the two-point Gauss Quadrature Rule, the integral is approximated as

$$
I=\int_{a}^{b} f(x) d x \approx c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)
$$

$$
\int_{-1}^{1} f(x) d x \approx w_{1} f\left(x_{1}\right)+w_{2} f\left(x_{2}\right)
$$

To find $w_{\mathrm{i}}, x_{\mathrm{i}}$ we need four conditions
$=$ find $w_{\mathrm{i}}, x_{\mathrm{i}}$ so that the integration rule has degree of precision 3

$$
\begin{aligned}
& f(x)=1: \int_{-1}^{1} 1 d x=2=w_{1}+w_{2} \\
& f(x)=x: \int_{-1}^{1} x d x=0=w_{1} x_{1}+w_{2} x_{2} \\
& f(x)=x^{2}: \int_{-1}^{1} x^{2} d x=\frac{2}{3}=w_{1} x_{1}^{2}+w_{2} x_{2}^{2} \\
& f(x)=x^{3}: \int_{-1}^{1} x^{3} d x=0=w_{1} x_{1}^{3}+w_{2} x_{2}^{3} . \\
& w_{1}=w_{2}=1 . \\
&-x_{1}=x_{2}=1 / 3^{1 / 2} \approx 0.5773502692 .
\end{aligned}
$$

(Gauss-Legendre Two-Point Rule).

$$
\begin{gathered}
\int_{-1}^{1} f(x) d x \approx G_{2}(f)=f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right) . \\
\int_{-1}^{1} f(x) d x=f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)+E_{2}(f), \\
E_{2}(f)=\frac{f^{(4)}(c)}{135} .
\end{gathered}
$$

The Gauss-Legendre rule $G_{2}(f)$ has degree of precision $n=3$.

The general N-point Gauss-Legendre rule is exact for polynomial functions of degree $\leq 2 N-1$, and the numerical integration formula is
(16)

$$
G_{N}(f)=w_{N, 1} f\left(x_{N, 1}\right)+w_{N, 2} f\left(x_{N, 2}\right)+\cdots+w_{N, N} f\left(x_{N, N}\right)
$$

Table 79 Gauss-Legendre Abscissas and Weights
$\int_{-1}^{1} f(x) d x=\sum_{k=1}^{N} w_{N, k} f\left(x_{N, k}\right)+E_{N}(f)$

			Truncation error,
N	Abscissas, $x_{N, k}$	Weights, $w_{N, k}$	$E_{N}(f)$
2	-0.5773502692	1.0000000000	$\frac{f^{(f)}(c)}{135}$
	0.5773502692	1.0000000000	$\frac{f^{(6)}(c)}{15,750}$
3	± 0.7745966692	0.5555555556	$\frac{f^{(8)}(c)}{3,472,875}$
4	0.0000000000	0.8888888888	0.8478548451

Theorem 7.9 (Gauss-Legendre Three-Point Rule). If f is continuous on $[-1,1]$, then
(17)

$$
\int_{-1}^{1} f(x) d x \approx G_{3}(f)=\frac{5 f(-\sqrt{3 / 5})+8 f(0)+5 f(\sqrt{3 / 5})}{9}
$$

The Gauss-Legendre rule $G_{3}(f)$ has degree of precision $n=5$. If $f \in C^{6}[-1,1]$, then
(18)

$$
\int_{-1}^{1} f(x) d x=\frac{5 f(-\sqrt{3 / 5})+8 f(0)+5 f(\sqrt{3 / 5})}{9}+E_{3}(f)
$$

where
(19)

$$
E_{3}(f)=\frac{f^{(6)}(c)}{15,750}
$$

Theorem 7.10 (Gauss-Legendre Translation). Suppose that the abscissas $\left\{x_{N, k}\right\}_{k=1}^{N}$ and weights $\left\{w_{N, k}\right\}_{k=1}^{N}$ are given for the N-point Gauss-Legendre rule over $[-1,1]$. To apply the rule over the interval $[a, b]$, use the change of variable

$$
\begin{equation*}
t=\frac{a+b}{2}+\frac{b-a}{2} x \quad \text { and } \quad d t=\frac{b-a}{2} d x \tag{20}
\end{equation*}
$$

Then the relationship

$$
\begin{equation*}
\int_{a}^{b} f(t) d t=\int_{-1}^{1} f\left(\frac{a+b}{2}+\frac{b-a}{2} x\right) \frac{b-a}{2} d x \tag{21}
\end{equation*}
$$

is used to obtain the quadrature formula
(22)

$$
\int_{a}^{b} f(t) d t=\frac{b-a}{2} \sum_{k=1}^{N} w_{N, k} f\left(\frac{a+b}{2}+\frac{b-a}{2} x_{N, k}\right)
$$

