

$$E[f] = Kf^{(n+1)}(c)$$

Derivation of Simpson's rule from Lagrange Polynomial

$$f(x) \approx P_M(x) = \sum_{k=0}^M f_k L_{M,k}(x),$$

$$\int_{x_0}^{x_M} f(x) dx \approx \int_{x_0}^{x_M} P_M(x) dx$$

$$P_2(x) = f_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} + f_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + f_2 \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

$$E_N(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_N) f^{(N+1)}(c)}{(N+1)!}$$
Integrate P_2 to get Simpson's rule
Integrate F_2 to get the truncation error/degree of precision

For a fair comparison of various methods use the <u>same number of function evaluations</u> in each method. E.g. Five evaluations in $[x_0, x_4]$ $\int_{x_0}^{x_4} f(x) dx = \int_{x_0}^{x_1} f(x) dx + \int_{x_1}^{x_2} f(x) dx + \int_{x_2}^{x_3} f(x) dx + \int_{x_3}^{x_4} f(x) dx$ (17) $\approx \frac{h}{2}(f_0 + f_1) + \frac{h}{2}(f_1 + f_2) + \frac{h}{2}(f_2 + f_3) + \frac{h}{2}(f_3 + f_4)$ $= \frac{h}{2}(f_0 + 2f_1 + 2f_2 + 2f_3 + f_4).$ composite trapezoidal rule (18) $\int_{x_0}^{x_4} f(x) dx = \int_{x_0}^{x_2} f(x) dx + \int_{x_2}^{x_4} f(x) dx$ $= \frac{h}{3}(f_0 + 4f_1 + f_2) + \frac{h}{3}(f_2 + 4f_3 + f_4)$ $= \frac{h}{3}(f_0 + 4f_1 + 2f_2 + 4f_3 + f_4).$ composite Simpson's rule

Theorem 7.2 (Composite Trapezoidal Rule). Suppose that the interval [a, b] is subdivided into M subintervals [x_k, x_{k+1}] of width h = (b-a)/M by using the equally spaced nodes $x_k = a + kh$, for k = 0, 1, ..., M. The composite trapezoidal rule for M subintervals can be expressed $\int_a^b f(x) dx \approx T(f, h)$ $T(f, h) = \frac{h}{2} (f_0 + 2f_1 + 2f_2 + 2f_3 + \dots + 2f_{M-2} + 2f_{M-1} + f_M)$ $T(f, h) = \frac{h}{2} \sum_{k=1}^M (f(x_{k-1}) + f(x_k))$

Now we are ready to add up the error terms for all of the intervals $[x_k, x_{k+1}]$:

(13)
$$\int_{a}^{b} f(x) dx = \sum_{k=1}^{M} \int_{x_{k-1}}^{x_{k}} f(x) dx$$
$$= \sum_{k=1}^{M} \frac{h}{2} (f(x_{k-1}) + f(x_{k})) - \frac{h^{3}}{12} \sum_{k=1}^{M} f^{(2)}(c_{k}).$$

The first sum is the composite trapezoidal rule T(f, h). In the second term, one factor of *h* is replaced with its equivalent h = (b - a)/M, and the result is

$$\int_{a}^{b} f(x) \, dx = T(f,h) - \frac{(b-a)h^2}{12} \left(\frac{1}{M} \sum_{k=1}^{M} f^{(2)}(c_k) \right)$$

The term in parentheses can be recognized as an average of values for the second derivative and hence is replaced by $f^{(2)}(c)$. Therefore, we have established that

$$\int_{a}^{b} f(x) \, dx = T(f,h) - \frac{(b-a)f^{(2)}(c)h^2}{12}$$

Example 7.7. Consider $f(x) = 2 + \sin(2\sqrt{x})$. Investigate the error when the composite trapezoidal rule is used over [1, 6] and the number of subintervals is 10, 20, 40, 80, and 160.

Table 7.2	Composite Trapezoidal Rule for
f(x) = 2 +	$-\sin(2\sqrt{x})$ over [1, 6]

М	h	T(f,h)	$E_T(f,h) = O(h^2)$
10	0.5	8.19385457	-0.01037540
20	0.25	8.18604926	-0.00257006
40	0.125	8.18412019	-0.00064098
80	0.0625	8.18363936	-0.00016015
160	0.03125	8.18351924	-0.00004003

$$\int_{a}^{b} f(x) dx \approx S(f,h) = \frac{h}{3}(f_{0} + 4f_{1} + 2f_{2} + 4f_{3} + \dots + 2f_{2M-2} + 4f_{2M-1} + f_{2M})$$

$$= \frac{h}{3} \sum_{k=1}^{M} (f(x_{2k-2}) + 4f(x_{2k-1}) + f(x_{2k}))$$

Then

$$\int_{a}^{b} f(x) dx = 2h \left[\frac{f(x_{0}) + 4f(x_{1}) + f(x_{2})}{6} \right] + \dots + 2h \left[\frac{f(x_{2}) + 4f(x_{3}) + f(x_{4})}{6} \right] + \dots + 2h \left[\frac{f(x_{2}) + 4f(x_{3}) + f(x_{4})}{6} \right] + \dots + 2h \left[\frac{f(x_{2M-2}) + 4f(x_{2M-1}) + f(x_{2M})}{6} \right]$$

$$\int_{a}^{b} f(x) dx = \frac{h}{3} [f(x_{0}) + 4\{f(x_{1}) + f(x_{3}) + \dots + f(x_{2M-1})\} + \dots] - \dots + 2\{f(x_{2}) + f(x_{4}) + \dots + f(x_{2M-2})\} + f(x_{2M})\}]$$

$$= \frac{h}{3} \left[\sum_{i=1}^{M} (f(x_{2i-2}) + 4f(x_{2i-1}) + f(x_{2i})) \right]$$

	Si	mpson's l	Rule: Erro	r Analysis
S(f	υu		$S(f,h) + E_S(f,h) + \frac{2h}{2} \sum_{k=1}^{M-1} \frac{2h}{k} \sum_{k=1}^{M-1} $	f, h) $\int_{-1}^{-1} f(x_{2k}) + \frac{4h}{3} \sum_{k=1}^{M} f(x_{2k-1})$
			κ=	$3 \sum_{k=1}^{j} 5^{(k)} 2^{k-1}$
E_S	(f,h)	$b = \frac{-(b-a)}{1}$	$h)f^{(4)}(c)h^4$ 180	
			posite Simpson $2\sqrt{x}$) over [1, 6]	Rule for
-				Rule for $E_S(f, h) = O(h^4)$
-	f(x)	$= 2 + \sin(2$	(\sqrt{x}) over $[1, 6]$	
-	f(x) M	$= 2 + \sin(2 h)$	$\hat{L}\sqrt{x}$) over [1, 6] S(f, h)	$E_{\mathcal{S}}(f,h) = O(h^4)$
-	f(x) M 5	$= 2 + \sin(2 - h)$ 0.5	S(f, h) 8.18301549	$E_S(f,h) = O(h^4)$ 0.00046371
-	f(x) M 5 10	= 2 + sin(2 h 0.5 0.25	S(f, h) 8.18301549 8.18344750	$E_S(f, h) = O(h^4)$ 0.00046371 0.00003171

Proof. For the even nodes $x_0 < x_2 < \cdots < x_{2M-2} < x_{2M}$, we use the trapezoidal rule with step size 2h:

(3)
$$T(J-1) = \frac{2h}{2}(f_0 + 2f_2 + 2f_4 + \dots + 2f_{2M-4} + 2f_{2M-2} + f_{2M}).$$

For all of the nodes $x_0 < x_1 < x_2 < \cdots < x_{2M-1} < x_{2M}$, we use the trapezoidal rule

with step size h:

(4)
$$T(J) = \frac{h}{2}(f_0 + 2f_1 + 2f_2 + \dots + 2f_{2M-2} + 2f_{2M-1} + f_{2M}).$$

Collecting the even and odd subscripts in (4) yields

(5)
$$T(J) = \frac{h}{2}(f_0 + 2f_2 + \dots + 2f_{2M-2} + f_{2M}) + h \sum_{k=1}^M f_{2k-1}.$$

Substituting (3) into (5) results in $T(J) = T(J-1)/2 + h \sum_{k=1}^{M} f_{2k-1}$, and the proof of the theorem is complete.

Example 7.11. Use the sequential trapezoidal rule to compute the approximations T(0), T(1), T(2), and T(3) for the integral $\int_1^5 dx/x = \ln(5) - \ln(1) = 1.609437912$. Table 7.4 shows the nine values required to compute T(3) and the midpoints required to compute T(1), T(2), and T(3). Details for obtaining the results are as follows:

When
$$h = 4$$
: $T(0) = \frac{4}{2}(1.000000 + 0.200000) = 2.400000.$
When $h = 2$: $T(1) = \frac{T(0)}{2} + 2(0.33333)$
 $= 1.200000 + 0.6666666 = 1.866666.$
When $h = 1$: $T(2) = \frac{T(1)}{2} + 1(0.500000 + 0.250000)$
 $= 0.933333 + 0.750000 = 1.683333.$
When $h = \frac{1}{2}$: $T(3) = \frac{T(2)}{2} + \frac{1}{2}(0.666667 + 0.400000 + 0.285714 + 0.222222)$
 $= 0.841667 + 0.787302 = 1.628968.$

12

Theorem 7.5 (Recursive Simpson Rules). Suppose that $\{T(J)\}$ is the sequence of trapezoidal rules generated by Corollary 7.4. If $J \ge 1$ and S(J) is Simpson's rule for 2^J subintervals of [a, b], then S(J) and the trapezoidal rules T(J - 1) and T(J) obey the relationship

(7)
$$S(J) = \frac{4T(J) - T(J-1)}{3}$$
 for $J = 1, 2, ...$

Proof. The trapezoidal rule T(J) with step size h yields the approximation $\int_{a}^{b} f(x) dx \approx \frac{h}{2} (f_0 + 2f_1 + 2f_2 + \dots + 2f_{2M-2} + 2f_{2M-1} + f_{2M})$ (8) = T(J).The trapezoidal rule T(J-1) with step size 2h produces (9) $\int_{a}^{b} f(x) dx \approx h(f_{0} + 2f_{2} + \dots + 2f_{2M-2} + f_{2M}) = T(J-1).$ Multiplying relation (8) by 4 yields $4\int_{a}^{b} f(x) \, dx \approx h(2f_0 + 4f_1 + 4f_2 + \dots + 4f_{2M-2} + 4f_{2M-1} + 2f_M)$ (10) = 4T(J).Now subtract (9) from (10) and the result is $3\int_{a}^{b} f(x) dx \approx h(f_{0} + 4f_{1} + 2f_{2} + \dots + 2f_{2M-2} + 4f_{2M-1} + f_{2M})$ = 4T(J) - T(J-1).(11) This can be rearranged to obtain $\int_{a}^{b} f(x) dx \approx \frac{h}{3} (f_{0} + 4f_{1} + 2f_{2} + \dots + 2f_{2M-2} + 4f_{2M-1} + f_{2M})$ $= \frac{4T(J) - T(J-1)}{3}.$ (12) The middle term in (12) is Simpson's rule S(J) = S(f, h) and hence the theorem is proved.

Example 7.12. Use the sequential Simpson rule to compute the approximations S(1), S(2), and S(3) for the integral of Example 7.11. Using the results of Example 7.11 and formula (7) with J = 1, 2, and 3, we compute $S(1) = \frac{4T(1) - T(0)}{3} = \frac{4(1.866666) - 2.400000}{3} = 1.688888$, $S(2) = \frac{4T(2) - T(1)}{3} = \frac{4(1.683333) - 1.866666}{3} = 1.622222$, $S(3) = \frac{4T(3) - T(2)}{3} = \frac{4(1.628968) - 1.683333}{3} = 1.610846$.

Romberg Integration $s(J) = \frac{4T(J) - T(J - 1)}{3} \quad \text{for } J = 1, 2, \dots$ **Definition 7.4.** Define the sequence $\{R(J, K) : J \ge K\}_{J=0}^{\infty}$ of quadrature formulas for f(x) over [a, b] as follows $R(J, 0) = T(J) \quad \text{for } J \ge 0, \text{ is the sequential trapezoidal rule.}$ (31) $R(J, 1) = S(J) \quad \text{for } J \ge 1, \text{ is the sequential Simpson rule.}$ $R(J, 1) = \frac{4^{1}R(J, 0) - R(J - 1, 0)}{4^{1} - 1} \quad \text{for } J \ge 1$ $R(J, 1) = \frac{4^{1}R(J, 0) - R(J - 1, 0)}{4^{1} - 1} \quad \text{for } J \ge 1$ $recall \text{ that} \qquad \int_{a}^{b} f(x) \, dx = T(f, h) + O(h^{2}),$ $\int_{a}^{b} f(x) \, dx = S(f, h) + O(h^{4}),$

J	R(J, 0)	R(J, 1)	R(J, 2)	R(J, 3)	R(J, 4)
	Trapezoidal	Simpson's	Boole's	Third	Fourth
	rule	rule	rule	improvement	improvement
0 1 2 3 4	$ \begin{array}{c} R(0, 0) \\ R(1, 0) \\ R(2, 0) \\ R(3, 0) \\ R(4, 0) \end{array} $	R(1, 1) = R(2, 1) = R(3, 1) = R(4, 1)	R(2, 2) R(3, 2) R(4, 2)	R(3, 3) R(4, 3)	

	•	0	0		ximations for the definite = 2.038197427067	integral
Ta	Jo ble 7.6			Z 4 Tableau for Exa		
J	Т	R(J, 0) rapezoidal rule		R(J, 1) Simpson's rule	R(J, 2) Boole's rule	R(J, 3) Third improvement
0 1 2 3 4	1.72 1.96 2.01	35398163397 26812656758 50534166564 8793948078 33347341805	2.0 2.0	40617487878 38441336499 38213875249 38198473047	2.038296259740 2.038198711166 2.038197446234	2.038197162776 2.038197426156
5		36984954990	2.038197492719		2.038197427363	2.038197427064
- Ta	ible 7.7	Romberg Error $E(J, 0) = O($		eau for Example E(J, 1) = O(h		$E(J,3) = O(h^8)$
				- (- , - , - (-	, -(-,-, -(-,	- (-) - (-)
0	b - a	-1.252799263	670			
0	b-a $\frac{b-a}{2}$	-1.252799263 -0.311384770		0.0024200608	11	
-			309	0.0024200608		
1	$\frac{b-a}{2}$ $\frac{b-a}{2}$	-0.311384770	1309 1503		32 0.000098832673	-0.000000264291
1	$\frac{\frac{b-a}{2}}{\frac{b-a}{4}}$	-0.311384770 -0.077663260	9309 9503 989	0.0002439094	0.000098832673 0.000001284099	

Basis of the Gaussian Quadrature Rule

Previously, the Trapezoidal Rule can be developed by the method of undetermined coefficients as:

$$\int_{a}^{b} f(x) dx \cong c_1 f(a) + c_2 f(b)$$

$$=\frac{b-a}{2}f(a)+\frac{b-a}{2}f(b)$$

Basis of the Gaussian
Gauss Duadrature Rule is an extension of the
frapezoidal Rule approximation where the arguments of the
function are not predetermined as a and b but as unknowns
x_1 and x_2. In the two-point Gauss Quadrature Rule, the
integral is approximated as $f = \int_{a}^{b} f(x) dx \approx c_1 f(x_1) + c_2 f(x_2)$

$$\int_{-1}^{1} f(x) dx \approx w_1 f(x_1) + w_2 f(x_2)$$

To find w_i , x_i we need four conditions
= find w_i , x_i so that the integration rule has degree of precision 3
 $f(x) = 1$: $\int_{-1}^{1} 1 dx = 2 = w_1 + w_2$
 $f(x) = x$: $\int_{-1}^{1} x dx = 0 = w_1 x_1 + w_2 x_2$
 $f(x) = x^2$: $\int_{-1}^{1} x^2 dx = \frac{2}{3} = w_1 x_1^2 + w_2 x_2^2$
 $f(x) = x^3$: $\int_{-1}^{1} x^3 dx = 0 = w_1 x_1^3 + w_2 x_2^3$.
 $w_1 = w_2 = 1$.
 $-x_1 = x_2 = 1/3^{1/2} \approx 0.5773502692$.

(Gauss-Legendre Two-Point Rule).

$$\int_{-1}^{1} f(x) dx \approx G_2(f) = f\left(\frac{-1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right).$$

$$\int_{-1}^{1} f(x) dx = f\left(\frac{-1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right) + E_2(f).$$

$$E_2(f) = \frac{f^{(4)}(c)}{135}.$$
The Gauss-Legendre rule $G_2(f)$ has degree of precision $n = 3$.

Theorem 7.9 (Gauss-Legendre Three-Point Rule). If
$$f$$
 is continuous on $[-1, 1]$, then
(17) $\int_{-1}^{1} f(x) dx \approx G_3(f) = \frac{5f(-\sqrt{3/5}) + 8f(0) + 5f(\sqrt{3/5})}{9}$.
The Gauss-Legendre rule $G_3(f)$ has degree of precision $n = 5$. If $f \in C^6[-1, 1]$, then
(18) $\int_{-1}^{1} f(x) dx = \frac{5f(-\sqrt{3/5}) + 8f(0) + 5f(\sqrt{3/5})}{9} + E_3(f)$,
where
(19) $E_3(f) = \frac{f^{(6)}(c)}{15,750}$.

Theorem 7.10 (Gauss-Legendre Translation). Suppose that the abscissas $\{x_{N,k}\}_{k=1}^{N}$ and weights $\{w_{N,k}\}_{k=1}^{N}$ are given for the *N*-point Gauss-Legendre rule over [-1, 1]. To apply the rule over the interval [a, b], use the change of variable

(20)
$$t = \frac{a+b}{2} + \frac{b-a}{2}x$$
 and $dt = \frac{b-a}{2}dx$

Then the relationship

(21)
$$\int_{a}^{b} f(t) dt = \int_{-1}^{1} f\left(\frac{a+b}{2} + \frac{b-a}{2}x\right) \frac{b-a}{2} dx$$

is used to obtain the quadrature formula

(22)
$$\int_{a}^{b} f(t) dt = \frac{b-a}{2} \sum_{k=1}^{N} w_{N,k} f\left(\frac{a+b}{2} + \frac{b-a}{2} x_{N,k}\right).$$