

## Vector Mechanics for Engineers: Dynamics

## Contents

Introduction
Equations of Motion of a Rigid Body
Angular Momentum of a Rigid Body in Plane Motion
Plane Motion of a Rigid Body: d'Alembert's Principle
Axioms of the Mechanics of Rigid Bodies
Problems Involving the Motion of a Rigid Body
Sample Problem 16.1
Sample Problem 16.2

Sample Problem 16.3
Sample Problem 16.4
Sample Problem 16.5
Constrained Plane Motion
Constrained Plane Motion:
Noncentroidal Rotation
Constrained Plane Motion:
Rolling Motion
Sample Problem 16.6
Sample Problem 16.8
Sample Problem 16.9
Sample Problem 16.10




## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.1

## SOLUTION:



- Calculate the acceleration during the skidding stop by assuming uniform acceleration.
- Draw the free-body-diagram equation expressing the equivalence of the external and effective forces.

At a forward speed of $30 \mathrm{ft} / \mathrm{s}$, the truck brakes were applied, causing the wheels to stop rotating. It was observed that the truck to skidded to a stop in 20 ft .

Determine the magnitude of the normal reaction and the friction force at each wheel as the truck skidded to a stop.

- Apply the three corresponding scalar equations to solve for the unknown normal wheel forces at the front and rear and the coefficient of friction between the wheels and road surface.


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.1



$$
\bar{v}_{0}=30 \frac{\mathrm{ft}}{\mathrm{~s}} \quad \bar{x}=20 \mathrm{ft}
$$



- Draw a free-body-diagram equation expressing the equivalence of the external and effective forces.
- Apply the corresponding scalar equations.
$+\uparrow \sum F_{y}=\sum\left(F_{y}\right)_{\text {eff }} \quad N_{A}+N_{B}-W=0$

$$
\begin{aligned}
& \xrightarrow{+} \sum F_{x}=\sum\left(F_{x}\right)_{e f f} \quad-F_{A}-F_{B}=-m \bar{a} \\
& -\mu_{k}\left(N_{A}+N_{B}\right)= \\
& -\mu_{k} W=-(W / g) \bar{a} \\
& \mu_{k}=\frac{\bar{a}}{g}=\frac{22.5}{32.2}=0.699
\end{aligned}
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.1



- Apply the corresponding scalar equations.
$+\sum \sum M_{A}=\sum\left(M_{A}\right)_{\text {eff }}$ $-(5 \mathrm{ft}) W+(12 \mathrm{ft}) N_{B}=(4 \mathrm{ft}) m \bar{a}$
$N_{B}=\frac{1}{12}\left(5 W+4 \frac{W}{g} \bar{a}\right)=\frac{W}{12}\left(5+4 \frac{\bar{a}}{g}\right)$
$N_{B}=0.650 \mathrm{~W}$
$N_{A}=W-N_{B}=0.350 W$
$N_{\text {rear }}=\frac{1}{2} N_{A}=\frac{1}{2}(0.350 \mathrm{~W}) \quad N_{\text {rear }}=0.175 \mathrm{~W}$
$F_{\text {rear }}=\mu_{k} N_{\text {rear }}=(0.690)(0.175 \mathrm{~W})$
$F_{\text {rear }}=0.122 \mathrm{~W}$
$N_{\text {front }}=\frac{1}{2} N_{V}=\frac{1}{2}(0.650 \mathrm{~W}) \quad N_{\text {front }}=0.325 \mathrm{~W}$
$F_{\text {front }}=\mu_{k} N_{\text {front }}=(0.690)(0.325 \mathrm{~W})$
$F_{\text {front }}=0.0 .227 \mathrm{~W}$
16-11


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.2

## SOLUTION:

- Note that after the wire is cut, all particles of the plate move along parallel circular paths of radius 150 mm . The plate is in curvilinear translation.
- Draw the free-body-diagram equation expressing the equivalence of the external and effective forces.
- Resolve into scalar component equations parallel and perpendicular to the path of the mass center.
- Solve the component equations and the moment equation for the unknown acceleration and link forces.


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.2

SOLUTION:


- Note that after the wire is cut, all particles of the plate move along parallel circular paths of radius 150 mm . The plate is in curvilinear translation.
- Draw the free-body-diagram equation expressing the equivalence of the external and effective forces.
- Resolve the diagram equation into components parallel and perpendicular to the path of the mass center.

$$
+\swarrow \sum F_{t}=\sum\left(F_{t}\right)_{e f f}
$$

$$
W \cos 30^{\circ}=m \bar{a}
$$

$$
m g \cos 30^{\circ}=
$$

$$
\bar{a}=\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 30^{\circ}
$$

$$
\bar{a}=8.50 \mathrm{~m} / \mathrm{s}^{2} \overline{ } \quad 60^{\circ}
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.2

- Solve the component equations and the moment




$$
\bar{a}=8.50 \mathrm{~m} / \mathrm{s}^{2} \not \square 60^{\circ}
$$

equation for the unknown acceleration and link forces.
$+\sum \sum M_{G}=\left(\sum M_{G}\right)_{\text {eff }}$
$\left(F_{A E} \sin 30^{\circ}\right)(250 \mathrm{~mm})-\left(F_{A E} \cos 30^{\circ}\right)(100 \mathrm{~mm})$ $\left(F_{D F} \sin 30^{\circ}\right)(250 \mathrm{~mm})+\left(F_{D F} \cos 30^{\circ}\right)(100 \mathrm{~mm})=0$
$38.4 F_{A E}+211.6 F_{D F}=0$
$F_{D F}=-0.1815 F_{A E}$
$+\sum F_{n}=\sum\left(F_{n}\right)_{e f f}$
$F_{A E}+F_{D F}-W \sin 30^{\circ}=0$
$F_{A E}-0.1815 F_{A E}-W \sin 30^{\circ}=0$
$F_{A E}=0.619(8 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \quad F_{A E}=47.9 \mathrm{~N} \mathrm{~T}$
$F_{D F}=-0.1815(47.9 \mathrm{~N}) \quad F_{D F}=8.70 \mathrm{~N} \quad C$

$$
F_{D F}=8.70 \mathrm{~N} \quad C
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.3



10 lb
A pulley weighing 12 lb and having a radius of gyration of 8 in . is connected to two blocks as shown.

Assuming no axle friction, determine the angular acceleration of the pulley and the acceleration of each block.

## SOLUTION:

- Determine the direction of rotation by evaluating the net moment on the pulley due to the two blocks.
- Relate the acceleration of the blocks to the angular acceleration of the pulley.
- Draw the free-body-diagram equation expressing the equivalence of the external and effective forces on the complete pulley plus blocks system.
- Solve the corresponding moment equation for the pulley angular acceleration.


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.3



SOLUTION:

- Determine the direction of rotation by evaluating the net moment on the pulley due to the two blocks.
$+5 \sum M_{G}=(10 \mathrm{lb})(6 \mathrm{in})-(5 \mathrm{lb})(10 \mathrm{in})=10 \mathrm{in} \cdot \mathrm{lb}$
rotation is counterclockwise.

$$
\text { note: } \quad \begin{aligned}
\bar{I} & =m \bar{k}^{2}=\frac{W}{g} \bar{k}^{2} \\
& =\frac{12 \mathrm{lb}}{32.2 \mathrm{ft} / \mathrm{s}^{2}}\left(\frac{8}{12} \mathrm{ft}\right)^{2} \\
& =0.1656 \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{~s}^{2}
\end{aligned}
$$

- Relate the acceleration of the blocks to the angular acceleration of the pulley.

$$
\begin{aligned}
a_{A} & =r_{A} \alpha & a_{B} & =r_{B} \alpha \\
& =\left(\frac{10}{12} \mathrm{ft}\right) \alpha & & =\left(\frac{6}{12} \mathrm{ft}\right) \alpha
\end{aligned}
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.3

- Draw the free-body-diagram equation expressing the
 equivalence of the external and effective forces on the complete pulley and blocks system.
- Solve the corresponding moment equation for the pulley angular acceleration.

$$
+\sum \sum M_{G}=\sum\left(M_{G}\right)_{e f f}
$$

$$
(10 \mathrm{lb})\left(\frac{6}{12} \mathrm{ft}\right)-(5 \mathrm{lb})\left(\frac{10}{12} \mathrm{ft}\right)=\bar{I} \alpha+m_{B} a_{B}\left(\frac{6}{12} \mathrm{ft}\right)-m_{A} a_{A}\left(\frac{10}{12} \mathrm{ft}\right)
$$

$$
(10)\left(\frac{6}{12}\right)-(5)\left(\frac{10}{12}\right)=(0.1656) \alpha+\left(\frac{10}{32.2}\right)\left(\frac{6}{12} \alpha\right)\left(\frac{6}{12}\right)-\left(\frac{5}{32.2}\right)\left(\frac{10}{12}\right)\left(\frac{10}{12}\right)
$$

$$
\left.\alpha=2.374 \mathrm{rad} / \mathrm{s}^{2}\right)
$$

$\bar{I}=0.1656 \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2}$
$a_{A}=\left(\frac{10}{12} \alpha\right) \mathrm{ft} / \mathrm{s}^{2}$
$a_{B}=\left(\frac{6}{12} \alpha\right) \mathrm{ft} / \mathrm{s}^{2}$

Then,

$$
a_{A}=r_{A} \alpha
$$

$$
=\left(\frac{10}{12} \mathrm{ft}\right)\left(2.374 \mathrm{rad} / \mathrm{s}^{2}\right) \quad a_{\mathrm{A}}=1.978 \mathrm{ft} / \mathrm{s}^{2} \uparrow
$$

$$
a_{B}=r_{B} \alpha
$$

$$
=\left(\frac{6}{12} \mathrm{ft}\right)\left(2.374 \mathrm{rad} / \mathrm{s}^{2}\right) \quad a_{B}=1.187 \mathrm{ft} / \mathrm{s}^{2} \downarrow
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.4



A cord is wrapped around a homogeneous disk of mass 15 kg . The cord is pulled upwards with a force $T=180 \mathrm{~N}$.

Determine: (a) the acceleration of the center of the disk, (b) the angular acceleration of the disk, and (c) the acceleration of the cord.

## SOLUTION:

- Draw the free-body-diagram equation expressing the equivalence of the external and effective forces on the disk.
- Solve the three corresponding scalar equilibrium equations for the horizontal, vertical, and angular accelerations of the disk.
- Determine the acceleration of the cord by evaluating the tangential acceleration of the point $A$ on the disk.


## Vector Mechanics for Engineers: Dynamics

SOLUTION:

- Draw the free-body-diagram equation expressing the equivalence of the external and effective forces on the disk.

- Solve the three scalar equilibrium equations.

$$
\xrightarrow{+} \sum F_{x}=\sum\left(F_{x}\right)_{e f f}
$$

$0=m \bar{a}_{x}$
$\bar{a}_{x}=0$
$+\uparrow \sum F_{y}=\sum\left(F_{y}\right)_{\text {eff }}$
$T-W=m \bar{a}_{y}$
$\bar{a}_{y}=\frac{T-W}{m}=\frac{180 \mathrm{~N}-(15 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{15 \mathrm{~kg}}$
$\bar{a}_{y}=2.19 \mathrm{~m} / \mathrm{s}^{2} \uparrow$
$+\sum \sum M_{G}=\sum\left(M_{G}\right)_{\text {eff }}$
$-T r=\bar{I} \alpha=\left(\frac{1}{2} m r^{2}\right) \alpha$
$\alpha=-\frac{2 T}{m r}=-\frac{2(180 \mathrm{~N})}{(15 \mathrm{~kg})(0.5 \mathrm{~m})} \quad \alpha=48.0 \mathrm{rad} / \mathrm{s}^{2} 2$
16-19

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.4



$$
\bar{a}_{x}=0 \quad \bar{a}_{y}=2.19 \mathrm{~m} / \mathrm{s}^{2} \uparrow
$$

$$
\alpha=48.0 \mathrm{rad} / \mathrm{s}^{2} 2
$$

- Determine the acceleration of the cord by evaluating the tangential acceleration of the point $A$ on the disk.

$$
\begin{aligned}
\vec{a}_{\text {cord }} & =\left(a_{A}\right)_{t}=\bar{a}+\left(a_{A / G}\right)_{t} \\
& =2.19 \mathrm{~m} / \mathrm{s}^{2}+(0.5 \mathrm{~m})\left(48 \mathrm{rad} / \mathrm{s}^{2}\right)
\end{aligned}
$$

$$
a_{\text {cord }}=26.2 \mathrm{~m} / \mathrm{s}^{2} \uparrow
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.5



A uniform sphere of mass $m$ and radius $r$ is projected along a rough horizontal surface with a linear velocity $v_{0}$. The coefficient of kinetic friction between the sphere and the surface is $\mu_{k}$.

Determine: (a) the time $t_{1}$ at which the sphere will start rolling without sliding, and (b) the linear and angular velocities SOLUTION:

- Draw the free-body-diagram equation expressing the equivalence of the external and effective forces on the sphere.
- Solve the three corresponding scalar equilibrium equations for the normal reaction from the surface and the linear and angular accelerations of the sphere.
- Apply the kinematic relations for uniformly accelerated motion to determine the time at which the tangential velocity of the sphere at the surface is zero, i.e., when the sphere stops sliding.


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.5

## SOLUTION:

- Draw the free-body-diagram equation expressing the equivalence of external and effective forces on the sphere.
- Solve the three scalar equilibrium equations.

$$
\begin{array}{cl}
+\uparrow \sum F_{y}=\sum\left(F_{y}\right)_{\text {eff }} & \\
N-W=0 & \\
N=W=m g \\
+\sum F_{x}=\sum\left(F_{x}\right)_{\text {eff }} & \\
-F=m \bar{a} & \\
-\mu_{k} m g= & \\
+2 \sum M_{G}=\sum\left(M_{G}\right)_{\text {eff }} g \\
F r=\bar{I} \alpha & \\
\left(\mu_{k} m g\right) r=\left(\frac{2}{3} m r^{2}\right) \alpha & \alpha=\frac{5}{2} \frac{\mu_{k} g}{r}
\end{array}
$$

NOTE: As long as the sphere both rotates and slides, its linear and angular motions are uniformly accelerated.


## Vector Mechanics for Engineers: Dynamics

Constrained Motion: Noncentroidal Rotation


## Vector Mechanics for Engineers: Dynamics

## Constrained Plane Motion: Rolling Motion



- For a balanced disk constrained to roll without sliding, $\bar{x}=r \theta \quad \rightarrow \quad \bar{a}=r \alpha$
- Rolling, no sliding:
$F \leq \mu_{s} N \quad \bar{a}=r \alpha$
Rolling, sliding impending:
$F=\mu_{s} N \quad \bar{a}=r \alpha$
Rotating and sliding:

$$
F=\mu_{k} N \quad \bar{a}, r \alpha \text { independent }
$$

- For the geometric center of an unbalanced disk,

$$
a_{O}=r \alpha
$$

The acceleration of the mass center,

$$
\begin{aligned}
\vec{a}_{G} & =\vec{a}_{O}+\vec{a}_{G / O} \\
& =\vec{a}_{O}+\left(\vec{a}_{G / O}\right)_{t}+\left(\vec{a}_{G / O}\right)_{n}
\end{aligned}
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.6



The portion $A O B$ of the mechanism is actuated by gear $D$ and at the instant shown has a clockwise angular velocity of $8 \mathrm{rad} / \mathrm{s}$ and a counterclockwise angular acceleration of $40 \mathrm{rad} / \mathrm{s}^{2}$.

Determine: a) tangential force exerted by gear $D$, and b ) components of the reaction at shaft $O$.

## SOLUTION:

- Draw the free-body-equation for $A O B$, expressing the equivalence of the external and effective forces.
- Evaluate the external forces due to the weights of gear $E$ and arm $O B$ and the effective forces associated with the angular velocity and acceleration.
- Solve the three scalar equations derived from the free-body-equation for the tangential force at $A$ and the horizontal and vertical components of reaction at shaft $O$.


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.6



## SOLUTION:

- Draw the free-body-equation for $A O B$.
- Evaluate the external forces due to the weights of gear $E$ and arm $O B$ and the effective forces.
$W_{E}=(4 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=39.2 \mathrm{~N}$
$W_{O B}=(3 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=29.4 \mathrm{~N}$
$\bar{I}_{E} \alpha=m_{E} \bar{k}_{E}^{2} \alpha=(4 \mathrm{~kg})(0.085 \mathrm{~m})^{2}\left(40 \mathrm{rad} / \mathrm{s}^{2}\right)$
$=1.156 \mathrm{~N} \cdot \mathrm{~m}$
$m_{O B}\left(\bar{a}_{O B}\right)_{t}=m_{O B}(\bar{r} \alpha)=(3 \mathrm{~kg})(0.200 \mathrm{~m})\left(40 \mathrm{rad} / \mathrm{s}^{2}\right)$
$=24.0 \mathrm{~N}$
$m_{O B}\left(\bar{a}_{O B}\right)_{n}=m_{O B}\left(\bar{r} \omega^{2}\right)=(3 \mathrm{~kg})(0.200 \mathrm{~m})(8 \mathrm{rad} / \mathrm{s})^{2}$ $=38.4 \mathrm{~N}$
$\bar{I}_{O B} \alpha=\left(\frac{1}{12} m_{O B} L^{2}\right) \alpha=\frac{1}{12}(3 \mathrm{~kg})(0.400 \mathrm{~m})^{2}\left(40 \mathrm{rad} / \mathrm{s}^{2}\right)$
$=1.600 \mathrm{~N} \cdot \mathrm{~m}$


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.6



## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.8



A sphere of weight $W$ is released with no initial velocity and rolls without slipping on the incline.

Determine: $a$ ) the minimum value of the coefficient of friction, $b$ ) the velocity of $G$ after the sphere has rolled 10 ft and $c$ ) the velocity of $G$ if the sphere were to move 10 ft down a frictionless incline.

## SOLUTION:

- Draw the free-body-equation for the sphere, expressing the equivalence of the external and effective forces.
- With the linear and angular accelerations related, solve the three scalar equations derived from the free-body-equation for the angular acceleration and the normal and tangential reactions at $C$.
- Calculate the friction coefficient required for the indicated tangential reaction at $C$.
- Calculate the velocity after 10 ft of uniformly accelerated motion.
- Assuming no friction, calculate the linear acceleration down the incline and the corresponding velocity after 10 ft .


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.8

## SOLUTION:

- Draw the free-body-equation for the sphere, expressing the equivalence of the external and effective forces.

- With the linear and angular accelerations related, solve the three scalar equations derived from the free-bodyequation for the angular acceleration and the normal and tangential reactions at C .

$$
\begin{aligned}
& \sum M_{C}=\sum\left(M_{C}\right)_{e f f} \\
& \begin{aligned}
(W \sin \theta) r & =(m \bar{a}) r+\bar{I} \alpha \\
& =(m r \alpha) r+\left(\frac{2}{5} m r^{2}\right) \alpha \\
& =\left(\frac{W}{g} r \alpha\right) r+\left(\frac{2}{5} \frac{W}{g} r^{2}\right) \alpha \quad \alpha=\frac{5 g \sin \theta}{7 r} \\
\bar{a} & =r \alpha=\frac{5 g \sin 30^{\circ}}{7} \\
= & \frac{5\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right) \sin 30^{\circ}}{7} \quad \bar{a}=11.50 \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
\end{aligned}
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.8

- Solve the three scalar equations derived from the free-body-equation for the angular acceleration and the normal and tangential reactions at C .


$$
\begin{aligned}
\sum F_{x}=\sum\left(F_{x}\right)_{e f f} \quad \begin{aligned}
W \sin \theta-F & =m \bar{a} \\
& =\frac{W}{g} \frac{5 g \sin \theta}{7} \\
F & =\frac{2}{7} W \sin 30^{\circ}=0.143 W
\end{aligned} \\
\sum F_{y}=\sum\left(F_{y}\right)_{e f f} \quad \begin{array}{l}
N-W \cos \theta
\end{array}=0 \\
N=W \cos 30^{\circ}=0.866 W
\end{aligned}
$$

- Calculate the friction coefficient required for the indicated tangential reaction at $C$.

$$
\begin{aligned}
& F=\mu_{\mathrm{s}} N \\
& \mu_{\mathrm{s}}=\frac{F}{N}=\frac{0.143 W}{0.866 W}
\end{aligned}
$$



## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.9



A cord is wrapped around the inner hub of a wheel and pulled horizontally with a force of 200 N . The wheel has a mass of 50 kg and a radius of gyration of 70 mm . Knowing $\mu_{\mathrm{s}}=0.20$ and $\mu_{\mathrm{k}}=0.15$, determine the acceleration of $G$ and the angular acceleration of the wheel.

## SOLUTION:

- Draw the free-body-equation for the wheel, expressing the equivalence of the external and effective forces.
- Assuming rolling without slipping and therefore, related linear and angular accelerations, solve the scalar equations for the acceleration and the normal and tangential reactions at the ground.
- Compare the required tangential reaction to the maximum possible friction force.
- If slipping occurs, calculate the kinetic friction force and then solve the scalar equations for the linear and angular accelerations.


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.9

## SOLUTION



- Draw the free-body-equation for the wheel,.
- Assuming rolling without slipping, solve the scalar equations for the acceleration and ground reactions. $+2 \sum M_{C}=\sum\left(M_{C}\right)_{\text {eff }}$

$$
(200 \mathrm{~N})(0.040 \mathrm{~m})=m \bar{a}(0.100 \mathrm{~m})+\bar{I} \alpha
$$

$$
8.0 \mathrm{~N} \cdot \mathrm{~m}=(50 \mathrm{~kg})(0.100 \mathrm{~m})^{2} \alpha+\left(0.245 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \alpha
$$

$\bar{I}=m \bar{k}^{2}=(50 \mathrm{~kg})(0.70 \mathrm{~m})^{2}$

$$
\alpha=+10.74 \mathrm{rad} / \mathrm{s}^{2} 2
$$

$$
=0.245 \mathrm{~kg} \cdot \mathrm{~m}^{2}
$$

$$
\bar{a}=(0.100 \mathrm{~m})\left(10.74 \mathrm{rad} / \mathrm{s}^{2}\right)=1.074 \mathrm{~m} / \mathrm{s}^{2} \rightarrow
$$

$$
\xrightarrow{+} \sum F_{x}=\sum\left(F_{x}\right)_{e f f}
$$

$$
F+200 \mathrm{~N}=m \bar{a}=(50 \mathrm{~kg})\left(1.074 \mathrm{~m} / \mathrm{s}^{2}\right)
$$

$$
F=-146.3 \mathrm{~N} \leftarrow
$$

$$
\xrightarrow{+} \sum F_{x}=\sum\left(F_{x}\right)_{e f f}
$$

$$
N-W=0
$$

$$
N=m g=(50 \mathrm{~kg})\left(1.074 \mathrm{~m} / \mathrm{s}^{2}\right)=+490.5 \mathrm{~N} \uparrow
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.9



## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.10



The extremities of a 4-ft rod weighing 50 lb can move freely and with no friction along two straight tracks. The rod is released with no velocity from the position shown.

Determine: a) the angular acceleration of the rod, and $b$ ) the reactions at $A$ and $B$.

## SOLUTION:

- Based on the kinematics of the constrained motion, express the accelerations of $A, B$, and $G$ in terms of the angular acceleration.
- Draw the free-body-equation for the rod, expressing the equivalence of the external and effective forces.
- Solve the three corresponding scalar equations for the angular acceleration and the reactions at $A$ and $B$.


## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.10



SOLUTION:

- Based on the kinematics of the constrained motion, express the accelerations of $A, B$, and $G$ in terms of the angular acceleration.

Express the acceleration of $B$ as

$$
\vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A}
$$

With $a_{B / A}=4 \alpha$, the corresponding vector triangle and the law of signs yields

$$
a_{A}=5.46 \alpha \quad a_{B}=4.90 \alpha
$$

The acceleration of G is now obtained from

$$
\vec{a}=\vec{a}_{G}=\vec{a}_{A}+\vec{a}_{G / A} \text { where } a_{G / A}=2 \alpha
$$



Resolving into $x$ and $y$ components,

$$
\begin{aligned}
& \bar{a}_{x}=5.46 \alpha-2 \alpha \cos 60^{\circ}=4.46 \alpha \\
& \bar{a}_{y}=-2 \alpha \sin 60^{\circ}=-1.732 \alpha
\end{aligned}
$$

## Vector Mechanics for Engineers: Dynamics

## Sample Problem 16.10


$\bar{I}=\frac{1}{12} m l^{2}=\frac{1}{12} \frac{50 \mathrm{lb}}{32.2 \mathrm{ft} / \mathrm{s}^{2}}(4 \mathrm{ft})^{2}$
$=2.07 \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2}$
$\bar{I} \alpha=2.07 \alpha$
$m \bar{a}_{x}=\frac{50}{32.2}(4.46 \alpha)=6.93 \alpha$ $m \bar{a}_{y}=-\frac{50}{32.2}(1.732 \alpha)=-2.69 \alpha$

- Draw the free-body-equation for the rod, expressing the equivalence of the external and effective forces.
- Solve the three corresponding scalar equations for the angular acceleration and the reactions at $A$ and $B$.
$+\left\lceil\sum M_{E}=\sum\left(M_{E}\right)_{e f f}\right.$
$(50)(1.732)=(6.93 \alpha)(4.46)+(2.69 \alpha)(1.732)+2.07 \alpha$ $\alpha=+2.30 \mathrm{rad} / \mathrm{s}^{2}$

$$
\alpha=2.30 \mathrm{rad} / \mathrm{s}^{2} \overline{ }
$$

$\xrightarrow{+} \sum F_{x}=\sum\left(F_{x}\right)_{\text {eff }}$
$R_{B} \sin 45^{\circ}=(6.93)(2.30)$
$R_{B}=22.5 \mathrm{lb}$

$$
\vec{R}_{B}=22.51 \mathrm{~b} \_45^{\circ}
$$

$+\uparrow \sum F_{y}=\sum\left(F_{y}\right)_{\text {eff }}$
$R_{A}+(22.5) \cos 45^{\circ}-50=-(2.69)(2.30)$

$$
R_{A}=27.9 \mathrm{lb} \uparrow
$$

