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Vector Mechanics for Engineers: Dynamics
Introduction
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* Previously, problems dealing with the motion of particles were
solved through the fundamental equation of motion, F = ma.
Current chapter introduces two additional methods of analysis.

+ Method of work and energy: directly relates force, mass,
velocity and displacement.

+ Method of impulse and momentum: directly relates force,
mass, velocity, and time.
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Work of a Force
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+ Differential vector dr is the particle displacement.

« Work of the force is

dU=Fedr
=Fds cosa
= Fydx+Fydy+F,dz

* Work is a scalar quantity, i.e., it has magnitude and
sign but not direction.

» Dimensions of work are length x force. Units are
1J(joule)=(IN)1m) 1ft-Ib=1.356]J
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4 * Work of a force during a finite displacement,

Ao
Ul—)2 = J‘F.dr

A
S Sy
= [(Fcosa)ds = [F ds
S| Si
Ay
= j’(Fde+ Fydy + dez)
A
& -
* Work is represented b}{ the area under the
5] curve of F, plotted against s.
g 4

13-4




Vector Mechanics for Engineers: Dynamics
Work of a Force

uoiIp

YlUaAas

* Work of a constant force in rectilinear motion,
Uy, =(F cosa) Ax

* Work of the force of gravity,
dU = Fydx+ Fydy + F,dz
=-W dy
Y2
U =— W dy

Vi
=-W(y, —y;)=-W Ay

» Work of the weight is equal to product of
weight W and vertical displacement Ay.

A N
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» Work of the weight is positive when Ay < 0,
i.e., when the weight moves down.
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Work of a Force

Spring undeformed * Magnitude of the force exerted by a spring is
5 proportional to deflection,
1o F =kx
i I.me-l? k = spring constant (N/m or Ib/in.)
) » Work of the force exerted by spring,
—— dU = —F dx = —kxdx
I—:z—-l-‘s

X5
U,y =—[kx dx:%kxlz—%kx%
F Xq

] y » Work of the force exerted by spring is positive

when X, < X,, i.e., when the spring is returning to
its undeformed position.

d

A
VAN

f N —

* Work of the force exerted by the spring is equal to
negative of area under curve of F plotted against X,

T R Uiy =—L(F+F)A
I—m—-f 1-2 2( |+ Fy) Ax

ARV
- \4




Vector Mechanics for Engineers: Dynamics
Work of a Force

uoiIp

YlUaAas

Forces which do not do work (ds = 0 or cos &= 0):
* reaction at frictionless pin supporting rotating body,

* reaction at frictionless surface when body in contact
moves along surface,

* reaction at a roller moving along its track, and

» weight of a body when its center of gravity moves

i horizontally.
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B
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Particle Kinetic Energy: Principle of Work & Energy

» Consider a particle 8f mass m acted upon by force F
v

Fo=ma; =m—

t t at

dv ds dv

- =mvV—

ds dt ds
Fds=mvdv

* Integrating from A; to A, ,
S Va )
— _1
[Fds=m [vdv=Jmv
St i

1 2
—Emvl

U,y =T,-T, T =1mv? =Kkinetic energy

« The work of the force F is equal to the change in
kinetic energy of the particle.
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* Units of work and kinetic energy are the same:
T=1my?= kg(m) =(kgmjm= N-m=]
S 52
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* Wish to determine velocity of pendulum bob
r at A,. Consider work & kinetic energy.

\ _
i X * Force P acts normal to path and does no
“f“ work.
Ti+Up =T
0+WI = 1Vlv§
29

V2 = 1/2g|

* Velocity found without determining
expression for acceleration and integrating.

A
VAN

* All quantities are scalars and can be added
directly.

ARV
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¢ Forces which do no work are eliminated from
the problem.
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* Principle of work and energy cannot be
P applied to directly determine the acceleration
\ of the pendulum bob.

* Calculating the tension in the cord requires
supplementing the method of work and energy
with an application of Newton’s second law.

* As the bob passes through A, ,

ZFn =map
‘ ) Ag ‘ = ) Ag rJ:d W V%
— : P-W=—-=%
w g |
‘ P=W +V—vz—g|=3W
‘ V2 =4/2gl g |
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* Power = rate at which work is done.

_diU_lfod?
dt dt
:If.v

» Dimensions of power are work/time or force*velocity.
Units for power are

W (wath =1 =IN-" or 1hp=550"112 ~ 746 W
S S S

« 77 =efficiency

A
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_output work

> input work
> _ power output
power input
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kg SOLUTION:

+ Apply the principle of work and
energy separately to blocks A and B.

: * When the two relations are combined,
1300 kg the work of the cable forces cancel.
Solve for the velocity.

Two blocks are joined by an inextensible
cable as shown. If the system is released
from rest, determine the velocity of block
A after it has moved 2 m. Assume that

5| the coefficient of friction between block A
and the plane is 2 = 0.25 and that the

s pulley is weightless and frictionless.

13-12
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200 kg SOLUTION:

» Apply the principle of work and energy separately
to blocks A and B.

00kg W = (200kg)0.81m/s?)=1962N

Fa=ucNa=Wa =0251962N)=490N

T +U =Ty
0+Fc(2m)-Fa(2m)=1muv?

Fc(2m)-(490N)2m) =1 (200kg)v?

Wg = (300kg)(9.81m/s? )= 2940N
‘ T1+U1_>2 =T21
w,y 2" 0-F(2m)+Wg(2m)= L mgy?
[ms j — F(2m)+(2940N)(2m) = 1 (300 kg)v*
13-13
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¢ When the two relations are combined, the work of the
cable forces cancel. Solve for the velocity.

5 Fc(2m)—(490N)2m)=1(200kg)v>

—F;(2m)+(2940N)2m) =1 (300kg)v

(2940N)2m)—(490N)(2m) = 1 (200kg +300 kg)v?
_1 2
49007 = 1(500kg)v
M
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2.5 m/s Cable , SOLUTION:

* Apply the principle of work and energy
between the initial position and the
point at which the spring is fully
compressed and the velocity is zero.

A spring is used to stop a 60 kg package The only unknown in the relation is the
which is sliding on a horizontal surface. friction coefficient.

The spring has a constant k =20 kN/m

and is held by cables so that it is initially
compressed 120 mm. The package has a
velocity of 2.5 m/s in the position shown

and the maximum deflection of the spring
is 40 mm.

Determine () the coefficient of kinetic
friction between the package and surface
and (b) the velocity of the package as it
passes again through the position shown.

* Apply the principle of work and energy
for the rebound of the package. The
only unknown in the relation is the
velocity at the final position.

13-15
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Sample Problem 13.3
i v=0 SOLUTION:

* Apply principle of work and energy between initial
position and the point at which spring is fully compressed.

Ty =1mv? =1(60kg)2.5m/s)’ =1875] T, =0

i Ui50); = =W x
i)
v e _— (60kg)(9.81m/ s2X0.640 m)=—(3771)
1 F=muN
N 5 Prnin = kX0 = (20kN/m)(0.120m) = 2400N
Prax = K(Xo + AX) = (20kN/m)(0.160m) = 3200 N

‘ P (Ul—)Z)e = _%(Pmin + Pmax)AX
P =—-1(2400N +3200N)(0.040m)=-112.0J
= Pria
>
!‘ Z Uiso =(Uiso)s +(Uis0)e ==(3770)a - 1127
‘ Ax =40 mm

Tl +U1_)2 =T2:

187.51-(377 1)y —1127 =0

13-16
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vs vo=0 * Apply the principle of work and energy for the rebound

“Sfpm—

of the package.
T,=0  Ts=1mvi=1(60kghs

Uy 3 =(Us3)s +(Unys), =—(3770)sy +1121

=+36.5]
l“’
* 4__1) T2 +U2_)3 =T3 .
_1 2
Fzﬁ“u 0+36.5) = 1(60kg)v3

v3 =1.103m/s
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Sample Problem 13.4

SOLUTION:

* Apply principle of work and energy to
determine velocity at point 2.

» Apply Newton’s second law to find

normal force by the track at point 2.
A 2000 1b car starts from rest at point 1

and moves without friction down the
track shown.

* Apply principle of work and energy to
determine velocity at point 3.

» Apply Newton’s second law to find
minimum radius of curvature at point 3

= a) the force exerted by the track on such that a positive normal force is

the car at point 2, and exerted by the track.

Determine:

b) the minimum safe value of the
radius of curvature at point 3.

13-18
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Sample Problem 13.4
. SOLUTION:
* Apply principle of work and energy to determine

velocity at point 2.

12 W o
=Imvy=—"v
2 Y2 24 2

Ui, =+W(40ft)

T +U=Th:  0+W(40ft)= %‘%’vg

V3 =2(40ft)g = 2(40ft)(32.2ft/ sz) V, = 50.8t/s

‘ w * Apply Newton’s second law to find normal force by
mf" the track at point 2.
’_‘_l e +T 2 Fh=ma,:
j 2
‘ -W +N =ma, :V7VV72:V12(40ft)g
. gp g 20ft
" N =5W N =100001b

Vector Mechanics for Engineers: Dynamics
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Sample Problem 13.4

* Apply principle of work and energy to determine
velocity at point 3.

T,+U;,3=T; mw(zs&):%%’v%

vi =2(25ft)g = 2(25ft)32.21t/s) vy =40.1ft/s

W * Apply Newton’s second law to find minimum radius of
I curvature at point 3 such that a positive normal force is
¥ exerted by the track.
= i
- +{YF =ma,:
. f., ! "
=ma,
- WV W 2(25ft
57 o e
= 3 3
Bl

13-20
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SOLUTION:
TF Force exerted by the motor
cable has same direction as
I b the dumbwaiter velocity.
]“'u Power delivered by motor is
equal to Fvp, vp = 8 ft/s.

M 600 Ih

The dumbwaiter D and its load have a « In the first case, bodies are in uniform

combined weight of 600 Ib, while the motion. Determine force exerted by
counterweight C weighs 800 Ib. motor cable from conditions for static
\ equilibrium.

Determine the power delivered by the
electric motor M when the dumbwaiter
(a) is moving up at a constant speed of
8 ft/s and (b) has an instantaneous
velocity of 8 ft/s and an acceleration of
2.5 ft/s?, both directed upwards.

« In the second case, both bodies are
accelerating. Apply Newton’s
second law to each body to
determine the required motor cable
force.

<1 I~ NEs
=5 V JAAN AN
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Sample Problem 13.5
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* In the first case, bodies are in uniform motion.
Determine force exerted by motor cable from
conditions for static equilibrium.
¢ Free-body C:
+TYF, =0: 2T-800lb=0 T =400Ib

Free-body D:
+TYF, =0: F+T-6001b=0
F=6001b—T =6001b—4001b =200 Ib

Power = Fvp = (200 1b)(8ft/s)
=1600ft-1b/s

Power = (1600 ft-1b/s)—-"® —2 91 hp
5501t - 1b/s

800 Ib 600 Ib
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* In the second case, both bodies are accelerating. Apply
Newton’s second law to each body to determine the required
motor cable force.

ap =2.5ft/s? T ac=-lap=125ft/s*{

Free-body C:

+¥ Y Fy=mgac : 800-2T = %(1.25) T =384.51b
c — c ’
e Free-body D:
1 +1T S F, =mpap : F+T—6OO:—6OO(25)
800lb  meac y DD 322
TF F+384.5-600=46.6 F=262.11b
[> i ap
!‘ Power = Fvp =(262.11b)(8ft/s)= 2097 ft-1b/s
E ol — | l°
Lhp
Power = (2097 ft-Ib/s) - =3.81hp
600 Ib 5501t-1b/s
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Potential Energy

:"\ As

= * Work of the force of gravity W,
Uiy =Wy, -Wy,

w

» Work is independent of path followed; depends
only on the initial and final values of Wy.
Vg =Wy

y
|’ = potential energy of the body with respect
to force of gravity.

Ui =WVg) -Vg),

d

* Choice of datum from which the elevation y is
measured is arbitrary.
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* Units of work and potential energy are the same:
Vg =Wy=N-m=]J
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* Previous expression for potential energy of a body
with respect to gravity is only valid when the
weight of the body can be assumed constant.

» For a space vehicle, the variation of the force of
gravity with distance from the center of the earth
should be considered.

* Work of a gravitational force,

GMm GMm
i Upso=—— -
n n
<
B * Potential energy V, when the variation in the
5 force of gravity can not be neglected,
v __GMm_ wr?
g r r

13-25
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Spring undeformed

* Work of the force exerted by a spring depends
only on the initial and final deflections of the

spring,

I NV R
U1_>2 —Ekxl —EkXZ

1
1o

* The potential energy of the body with respect
to the elastic force,

Ve = %kx2
Uiso = (Ve )1 - (Ve )2
* Note that the preceding expression for V, is

valid only if the deflection of the spring is
measured from its undeformed position.

13-26
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» Concept of potential energy can be applied if the
work of the force is independent of the path

Y followed by its point of application.

' Uiso =V (X, y1.21) =V (%2, Y2, 25)

Such forces are described as conservative forces.

y Aglxg, ya, 32}

o P + For any conservative force applied on a closed path,
z § Fedr=0
* Elementary work corresponding to displacement
¥ P between two neighboring points,
dU =V(x,y,z)-V(x+dx,y+dy,z+dz)
=-dV(x,y,2)

<1 I~ NEs
=5 V JAAN AN

. Fydx+ Fydy + F,dz :—(wdx+avdy+6vdzJ
Aylxr 41, 21) OX oz

o) ”

7 : =

/ Eo NV NV NV gradv
ox oy oz
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Conservation of Energy

* Work of a conservative force,
Ui =Vi—V,

» Concept of work and energy,
Uoa=T-Ty

« Follows that
Tl +V1 = T2 +V2
E =T +V =constant

T,=0 V=W * When a particle moves under the action of
T, +V, =W/ conservative forces, the total mechanical
energy is constant.

d
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T, :%mvg = 5—(2 9¢)=W¢ V, =0 « Friction forces are not conservative. Total
mechanical energy of a system involving
friction decreases.

* Mechanical energy is dissipated by friction
into thermal energy. Total energy is constant.
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SOLUTION:

* Apply the principle of conservation of
energy between positions 1 and 2.

 The elastic and gravitational potential
energies at 1 and 2 are evaluated from
the given information. The initial kinetic
energy is zero.

A 20 Ib collar slides without friction  « Solve for the kinetic energy and
along a vertical rod as shown. The velocity at 2.

spring attached to the collar has an

undeflected length of 4 in. and a

constant of 3 Ib/in.

A N

If the collar is released from rest at
position 1, determine its velocity after
it has moved 6 in. to position 2.

ARV
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Sample Problem 13.6

SOLUTION:

* Apply the principle of conservation of energy between
positions 1 and 2.

Datum

Position 1: Ve =1k« =1 (31b/in.)8in.— 4in.)* = 24in.-Ib

2
V) =V +Vg =24in.-1b+0 =2ft-Ib
Tl =O
Position 2: Vg = %kx% = %(31b/in.)(10in.—4in.)2 =54in.-1b

Vg =Wy =(201b)~6in.)=—120in.-1b
Vi =V +Vg =54-120=—66in.-Ib=—5.5ft - Ib

d

A
VAN

Conservation of Energy:
Tl +V1 = T2 +V2

0+2ft-1b=0311v3 —5.5ft-1b

v, =4.91ft/s{

13-30
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SOLUTION:

+ Since the pellet must remain in contact
with the loop, the force exerted on the
pellet must be greater than or equal to
zero. Setting the force exerted by the
loop to zero, solve for the minimum
velocity at D.

* Apply the principle of conservation of
energy between points A and D. Solve

L Th? 0.5 Ib pellet is pushed against the for the spring deflection required to
spring and released from rest at A. produce the required velocity and
Neglecting friction, determine the kinetic energy at D.

I smallest deflection of the spring for
which the pellet will travel around the
loop and remain in contact with the
loop at all times.

uoiIp
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Sample Problem 13.7

SOLUTION:

+ Setting the force exerted by the loop to zero, solve for the
k=alin  Mminimum velocity at D.

+{YF,=ma,: W=ma, mg=mvd/r

VB =rg = (2 ft)(32.2ft/s) = 64.41t?/s?

* Apply the principle of conservation of energy between

T — T points A and D.
2 2 2

:* 2 Vi =Ve +Vg = Tkx® +0 = 1(361b/ft)x” =18x
L Tl = 0
M
Vy =V, +Vg =0+Wy = (0.51b)(4ft)=2ft-1b
I 1 05
T,=1mvg =" (64.4ft>/s*)=0.5ft b
‘ 2727P 232.2ft/s2( %)
B

Tl +V1 =T2 +V2

Datum B A
Pasition 1 0+18x2=0.5+2 (x=0.3727 ft = 4.47 in|

16
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- Vector Mechanics for Engineers: Dynamics
Principle of Impulse and Momentum

L

* Dimensions of the impulse of
a force are
force*time.

¢ Units for the impulse of a
force are

N-s:(kg-m/sz)-s:kg-m/s

A
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Impulsive Motion

Imp, _e:] F dt
b mvy

From Newton’s second law,

E = %(mv ) mvV = linear momentum
Fdt = d(mv)

t,

| Fdt =mv, —my;

4

t ~
[ Fdt = 1mp,_,, =impulse of the force F
4

mVl + Impl_)z = m\72

The final momentum of the particle can be
obtained by adding vectorially its initial
momentum and the impulse of the force during
the time interval.

Vector Mechanics for Engineers: Dynamics

mv FAt _mvy

WAL =1

d

A
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Force acting on a particle during a very short
time interval that is large enough to cause a
significant change in momentum is called an
impulsive force.

When impulsive forces act on a particle,
mv; + Y F At =mv,

When a baseball is struck by a bat, contact
occurs over a short time interval but force is
large enough to change sense of ball motion.

Nonimpulsive forces are forces for which
FAt is small and therefore, may be
neglected.

17
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SOLUTION:

» Apply the principle of impulse and
momentum. The impulse is equal to the
product of the constant forces and the

5o time interval.

An automobile weighing 4000 1b is
driven down a 5° incline at a speed of
60 mi/h when the brakes are applied,
causing a constant total braking force of
1500 Ib.

A
VAN

Determine the time required for the
automobile to come to a stop.
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SOLUTION:

* Apply the principle of impulse and
momentum.

my; + 22 1mMp;_,, =mv,

Taking components parallel to the

incline,
E é‘ E“ mv; + (W sin 5°)t - Ft =

(4000

d

- j(SSﬂ/s) +(4000sin 5°)t —1500t = 0

A
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e SOLUTION:
,\1__&40 ft/s A .. .
i  Apply the principle of impulse and
> momentum in terms of horizontal and
%’_’zjw& vertical component equations.
B W

A 4 oz baseball is pitched with a
velocity of 80 ft/s. After the ball is hit
by the bat, it has a velocity of 120 ft/s
in the direction shown. If the bat and
ball are in contact for 0.015 s,
determine the average impulsive force
exerted on the ball during the impact.

A N

ARV
- \4

13-37

Vector Mechanics for Engineers: Dynamics
Sample Problem 13.11

YlUusAas

uoiIp

SOLUTION:

7 * Apply the principle of impulse and momentum in
,)5 120 fiss terms of horizontal and vertical component equations.
,’J mVl + Impl_)z = mV2
%"_/34_0“3-,___ - X component equation:
B il
80 ft/s —mv; + FyAt = mv, cos40°
4/16 4/16
———(80)+ F,(0.15)=——(120cos40°
32.2( J+R015) 32.2( )
A F, =891b
—0+ _f& = § |
F At y component equation:
’ L At 0+ FyAt = mv, sin 40°
4/16
X F,(0.15)=—"—(120cos40°
y(0-15) =222 )
Fy, =39.91b

\If =(891b)i +(39.91b)j, F =97.51b
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SOLUTION:
3 m/s
l \% * Apply the principle of impulse and

momentum to the package-cart system
to determine the final velocity.

* Apply the same principle to the package
alone to determine the impulse exerted
on it from the change in its momentum.

A 10 kg package drops from a chute
into a 24 kg cart with a velocity of 3
m/s. Knowing that the cart is initially at
rest and can roll freely, determine (a)
the final velocity of the cart, (b) the
impulse exerted by the cart on the
package, and (c) the fraction of the
initial energy lost in the impact.

A N
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SOLUTION:

* Apply the principle of impulse and momentum to the package-cart
system to determine the final velocity.

vy

y L 30% -+ o R

R At

MY, + 2. 1mp;_,, :(mp +me

d

X components: mpVv; cos30°+0 = (mp +m; }\/2
(10 kg)(3 m/s)cos30° = (10 kg + 25 kg v,

A
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vy =0.742m/s
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* Apply the same principle to the package alone to determine the impulse
exerted on it from the change in its momentum.

HipVy

y L 30 +
X == E‘nr;.\:

I

Mp¥; +2.1Mpy ;5 =MV,

X components: MpV; c0s30° + F At =myv,

& (10kg)(3 m/s)cos30°+ FyAt = (10 kg)v, F At =—18.56N s
y components:  —MpV;sin30°+ FyAt =0
5] —(10kg)(3 m/s)sin30° + FyAt = 0 FyAt=15N"s

ARV
- \4

SImp, = FAt=(-18.56N sl +(15N-s)]  FAt=23.9N-s

Vector Mechanics for Engineers: Dynamics
Sample Problem 13.12
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vy

gy | + =

ﬁ bl (1100 + Hitg IV

R At

To determine the fraction of energy lost,
Ty =1mpv =1(10kg)(3m/s)’ =451

1
= V
2
T, =1(mp +m V2 =1 (10 kg + 25 kg)(0.742m/s)* =9.637

d

T,-T, 451-9.63]
T 457

=0.786
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| Problem 13.150

- (5 /s
—

30z TN

4.8 ft

o -

-

M Problem 13.154

i o
A'
3.6 ft
\II ]
| A
o EQ\_/V“\\O A
l—15ft —>
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» Impact: Collision between two bodies which
occurs during a small time interval and during
which the bodies exert large forces on each other.

* Line of Impact: Common normal to the surfaces
in contact during impact.

+ Central Impact: Impact for which the mass
centers of the two bodies lie on the line of impact;
otherwise, it is an eccentric impact..

Direct Central Impact

‘\
RE A ' . »
N P « Direct Impact: Impact for which the velocities of

the two bodies are directed along the line of
impact.

A =
L2] L

7 7
=] V]

» Oblique Impact: Impact for which one or both of
the bodies move along a line other than the line of
impact.

<

1)

uuiIp

Yluana

* Bodies moving in the same straight line,

VB
i
Va>Vg.
+ Upon impact the bodies undergo a
u

period of deformation, at the end of which,
they are in contact and moving at a
common velocity.

gy « A period of restitution follows during
_“_ which the bodies either regain their
original shape or remain permanently
deformed.

VAN

* Wish to determine the final velocities of the
two bodies. The total momentum of the
two body system is preserved,

— ——
-o__'. MAVA +MgVg = MgVh +MgVh
» A second relation between the final

velocities is required.

4
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Direct Central Impact
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e = coefficient of restitution

* Period of deformation: mav — [ Pdt =mau [Rdt u-v)

" :Ipdt_VA—U
0<e<l

* Period of restitution: MU —[Rdt = mpv/y

Total energy and total momentum conserved.

Vector Mechanics for Engineers: Dynamics
Problems Involving Energy and Momentum

YlUusAas

uoiIp

. : ‘ ‘ vg —u
* A similar analysis of particle B yields €= U—Va
~ VB
‘ » Combining the relations leads to the desired Vg~V =e(Va-Vg)
second relation between the final velocities.
‘ f I I E —N. ’ ’ ’ _ ( )V'
- « Perfectly plastic impact,e =0: vg =V =V MaVa +MpVE =(Mp +Mpg
DI
« Perfectly elastic impact, e = 1: VB —VA =VaA—Vp

* Three methods for the analysis of kinetics problems:
- Direct application of Newton’s second law
- Method of work and energy

- Method of impulse and momentum

* Select the method best suited for the problem or part of a problem
under consideration.

Impact:
Conservation Conservation of momentum Conservation
of energy Relative velocities of energy

d

A
Y VAN

(vgla=0

Ay B, Ay By
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Sample Problem 13.17
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SOLUTION:

» Apply the principle of conservation of
energy to determine the velocity of the
block at the instant of impact.

* Since the impact is perfectly plastic, the
block and pan move together at the same
velocity after impact. Determine that
velocity from the requirement that the
total momentum of the block and pan is

A 30 kg block is dropped from a height ~ conserved.

of 2 m onto the the 10 kg pan of a

spring scale. Assuming the impact to

be perfectly plastic, determine the

e maximum deflection of the pan. The

4| constant of the spring is k =20 kN/m.

* Apply the principle of conservation of
energy to determine the maximum
deflection of the spring.

13-50
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Vector Mechanics for Engineers: Dynamics
Sample Problem 13.17

Conservation
of energy
(wplp =0
-‘ Datum )

Impact: Total
momentum conserved

A N

ARV
- \4
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SOLUTION:

* Apply principle of conservation of energy to
determine velocity of the block at instant of impact.

T=0 V;=W,ay=(30)9.81)2)=588]J
T =%mA(VA)§ =%(30)(VA)% V=0

T] +V1 =T2 +V2
0+5881=1(30)va); +0  (va), =6.26m/s

* Determine velocity after impact from requirement that
total momentum of the block and pan is conserved.
ma(Va), + mg(ve ), = (Ma + Mg V3
(30)6.26)+0=(30+10)v;  v;=4.70m/s

Sample Problem 13.17

Comservalion
of energy

e o
*3 No deformation
_L /{ of spring

Initial spring deflection due to
pan weight:

x =W _ (10JO8L) _ 4 g1 1573,

k  20x10°

d

A
VAN

ARV
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* Apply the principle of conservation of energy to
determine the maximum deflection of the spring.

Ty =5(ma+ mg V3 =%(30+10)(4.7)2= 4427
V3 =Vg +Ve

=0+1kg = ox10*Ja91x107f 02411
T4 =0

=Vg +Ve =(Wp +Wg - h)+ %kxﬁ

1
2

=—392(x, — X3)+%(20><103)X£

—-392(x, —4.91x10_3)+%(20><103)x£
T3 +V3 :T4 +V4
442 +0.241=0-392(x, —4.91x10*3)+%(20x103)x§
X =0.230m

h=0.225m

h=X; —X;=0230m-4.91x10" m
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15 ft/s
e
A B
o (-j -
) ) ) ¥
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Obligue Central Impact (freely moving particles)

L Al

» * Final velocities are
unknown in magnitude
and direction. Four
equations are required.

* No tangential impulse component;  (vp), =(Va),  (vg), =(vg)
tangential component of momentum
for each particle is conserved.

i< Normal component of total ma(va), + Mg (Vg ), =Ma(Va), + Mg (vp),
s momentum of the two particles is

conserved.

‘  Normal components of relative (Vg )n — (Vk)n = el(v A)n —(vg )nJ

Bl velocities before and after impact

are related by the coefficient of
restitution.

27
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Sample Problem 13.15
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A B SOLUTION:

» Resolve the ball velocities into components
normal and tangential to the contact plane.

va=30ft/s + Tangential component of momentum for

v =40 fi/s 8
each ball is conserved.

The magnitude and direction of the ¢ Total normal component of the momentum
velocities of two identical of the two ball system is conserved.
frictionless balls before they strike
each other are as shown. Assuming
e = 0.9, determine the magnitude
and direction of the velocity of each
ball after the impact.

¢ The normal relative velocities of the
balls are related by the coefficient of
restitution.

A N

* Solve the last two equations simultaneously
for the normal velocities of the balls after
the impact.

ARV
- \4

Vector Mechanics for Engineers: Dynamics
Sample Problem 13.15
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SOLUTION:

» Resolve the ball velocities into components normal and
tangential to the contact plane.

(Va), =Vac0s30° =26.0ft/s (Va) =Vasin30°=15.0ft/s

vy =30 fiss

(vg), =-Vgcos60°=-20.0ft/s  (vg), =Vpsin60° =34.61t/s

vy =40 ft/s

+ Tangential component of momentum for each ball is

myivyly, mglvgl, Conserved.
mg(va), mglvg), (Via\)t = (VA)[ = 15.0ft/s (V'B )t = (VB )t = 34.6ft/S
FAt  -FAt » Total normal component of the momentum of the two
+ =->Q p

ball system is conserved.

mglviy), miglvgl,
= s - mA(VA)n + mB(VB)n = mA(V;A)n + mB(V/B )n
Al i m(26.0)+ m(-20.0)=m(vy ), +m(vg),

(Va) +(vg )y = 6.0
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Sample Problem 13.15
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my(vy), mplvg), » The normal relative velocities of the balls are related by the
coefficient of restitution.
malva), mglvg), (V:A)n _ (VIB )n — el(VA)n _ (VB )nJ
FAt - FAt =0.90[26.0 - (-20.0)]=41.4

+ =->Q
v, (Vg * Solve the last two equations simultaneously for the normal
= velocities of the balls after the impact.

i T (Vi) =-17.7ft/s (vg), =23.7ft/s

vg =418 ft/s

Vp=—-17.7% +15.04,

A
VAN

Vi = 23.21t/s tan‘l(@) =40.3°
17.7

Vg =23.74 +34.61,

ARV
- \4

Vg = 41.91ft/s tan_l(ﬂ) =55.6°
23.7

Vector Mechanics for Engineers: Dynamics
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Sample Problem 13.16
s SOLUTION:

* Determine orientation of impact line of
action.

* The momentum component of ball A
tangential to the contact plane is
conserved.

 The total horizontal momentum of the
two ball system is conserved.

Ball B is hanging from an inextensible
cord. An identical ball A is released
from rest when it is just touching the
cord and acquires a velocity v, before
striking ball B. Assuming perfectly  Solve the last two expressions for the
elastic impact (e = 1) and no friction, velocity of ball A along the line of action
determine the velocity of each ball and the velocity of ball B which is
immediately after impact. horizontal.

* The relative velocities along the line of
action before and after the impact are
related by the coefficient of restitution.

d

A
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Sample Problem 13.16
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; SOLUTION:

* Determine orientation of impact line of action.

* The momentum component of ball A
2r 6 =30° tangential to the contact plane is
i conserved.
MV, + FAt = mvj
miv), MV sin30°+0 = m(v} ),

(V) =0.5vp

t mivy),
FAl * The total horizontal (X component)
momentum of the two ball system is

TAt conserved.
MV, + TAt = mVj + myg
0=m(V} ), cos30° —m(v} ), sin30° —mvj
0=(0.5vg)cos30° — (V4 ), sin30° - vg
0.5(Va ), +Vg = 0.433v,

NI\'“

</ </ A N
= \ Ay AN

Vector Mechanics for Engineers: Dynamics
Sample Problem 13.16
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 The relative velocities along the line of action before
(V4)n and after the impact are related by the coefficient of
restitution.

(V'B )n - (V’A)n = El(VA )n - (VB )nJ
Vg sin30° — (v} ), = Vo c0s30° -0
0.5vg — (V) =0.866v,

(va)e

* Solve the last two expressions for the velocity of ball
A along the line of action and the velocity of ball B
which is horizontal.

(Vp), ==0.520v,  Vh =0.693v,

(":-;)u = 0'52[}&!) ¢ \'.\

d

Vi = 0.5vp 4, — 0.520vp 4,

ARV
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Va=0.721vy B= tan*l(%j =46.1°

a=46.1°-30°=16.1°
vg =0.693v, «

13-60
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Oblique Central Impact (one particle is constrained in its motion)
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* Block constrained to move along horizontal
surface.

« Impulses from internal forces F and —F
along the n axis and from external force Fay
exerted by horizontal surface and directed
along the vertical to the surface.

+ Final velocity of ball unknown in direction and
magnitude and unknown final block velocity
magnitude. Three equations required.

13-61
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Oblique Central Impact
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mMyVy

+ Tangential momentum of ball is (vg ) =(vg )
conserved.

+ Total horizontal momentum of block ~ ma(va)+mp(vg ), =ma(Va)+mg(Vg),
and ball is conserved.

d

!

+ Normal component of relative (vg), - (a), =€l(va), —(vg), ]
velocities of block and ball are related
by coefficient of restitution.

A
VAN
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» Note: Validity of last expression does not follow from previous relation for
the coefficient of restitution. A similar but separate derivation is required.
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Sample Problem 13.14 impact of a particle with a massive rigid body)
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SOLUTION:

» Resolve ball velocity into components
normal and tangential to wall.

» Impulse exerted by the wall is normal
to the wall. Component of ball
momentum tangential to wall is
conserved.

» Assume that the wall has infinite mass
so that wall velocity before and after
impact is zero. Apply coefficient of
restitution relation to find change in
normal relative velocity between wall
and ball, i.e., the normal ball velocity.

A ball is thrown against a frictionless,
B vertical wall. Immediately before the
ball strikes the wall, its velocity has a
5| magnitude v and forms angle of 30°

B8 with the horizontal. Knowing that

e =0.90, determine the magnitude and
Bl| direction of the velocity of the ball as
it rebounds from the wall.

13-63
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SOLUTION:

» Resolve ball velocity into components parallel and
perpendicular to wall.

Vp =Vcos30°=0.866v Vy =Vsin30° = 0.500v

* Apply coefficient of restitution relation with zero wall

n velocity.
@ v os000 0-vp =e(vy—0)
| Vv, =—0.9(0.866v) = —0.779v
— {323?"
‘ 0.779¢ "\_\ _ _
B Py V' =-0.779v A, + 0.500v 4
4 ' V' =0.926v tan_l(w] =32.7°
0.500

13-64

Ko ' . Component of ball momentum tangential to wall is conserved.
30°_ | =V; =0.500v
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Block B having a mass of 9 kg is initially at
rest as shown on the upper surface of a 22.5
kg wedge A which is supported by a
horizontal surface. A 2 kg block C is
connected to block B by a cord, which
passes over a pulley of negligible mass.
Using computational software and denoting
by the coefficient of friction at all surfaces,
calculate the initial acceleration of the
wedge and the initial acceleration of block B
relative to the wedge for values of p>0. Use
0.01 increments for until the wedge does not
move and then use 0.1 increments until no
motion occurs.

~7 <7 A
=% Y VAN

Vector Mechanics for Engineers: Dynamics

%% Problem 12.C1 and Quiz 2
clear all, clc, fprintf("\n\n\t Solution of Problem 12.C1 and Quiz 2 ")

g=9.8I;
for me242=1:2

if me242==
Wa =200; % homework
Wb = 80; % homework
Wc = 18; % homework
fprintf("\n\n\t\t\t\t----Problem 12.C1----\n\n")
elseif me242==2
Wa = 22.5*g; % quiz2
Wb =9%g; % quiz2
We =2%g; % quiz2
fprintf("\n\n\t\t\t\t----Quiz 2----\n\n")
end
ma = Wa/g;
mb = Wb/g;
mc = Wc/g;

d

t=30;

th = t*pi/180;

Mu =0;

A = (1-Mu."2)*sin(th)-2*¥*Mu*cos(th);

a_A = g*(A*Wb*cos(th)-Wa*Mu)/(Wa+Wb*A*sin(th));

% print heading

fprintf(' Mu  Accel. of A (m/s"2)  Accel. of B wrt A, (m/s"2)\n");

ARV
- \4
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whilea A >0
a_BwA = (1/(Wb+Wc))*(g*(We-Wb*(Mu*cos(th)-sin(th)))+a_A*(Wb*Mu*sin(th)+(Wc+Wb)*cos(th)));
fprintf(' %3.2f %4.3f %4.3f\n,Mu,a_A,a BwA);
Mu =Mu+0.01;

A = (1-Mu."2)*sin(th)-2*Mu*cos(th);
a_A = g*(A*Wb*cos(th)-Wa*Mu)/(Wa+Wb*A*sin(th));
end
% Increase Mu to the next tenth
Mu = 0.20;
a_BwA = (g/(Wb+Wc))*(Wc-Wb*(Mu*cos(th)-sin(th)));
% print heading
fprintf('\n");
fprintf(' Mu  Accel. of B wrt A, (m/s"2)\n");
while a BWwA >0
a_BwA = (g/(Wb+Wc))*(Wc-Wb*(Mu*cos(th)-sin(th)));
ifa BWA>0
fprintf(' %3.2f %4.3f\n",Mu,a_BwA);
end
Mu = Mu+0.10;
end

end
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