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Introduction
• Previously, problems dealing with the motion of particles were 

solved through the fundamental equation of motion,
Current chapter introduces two additional methods of analysis.

.amF rr
=

• Method of work and energy:  directly relates force, mass, 
velocity and displacement.

• Method of impulse and momentum:  directly relates force, 
mass, velocity, and time.
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Work of a Force

• Differential vector is the particle displacement.rdr

• Work of the force is 

dzFdyFdxF
dsF

rdFdU

zyx ++=
=

•=
αcos

rr

• Work is a scalar quantity, i.e., it has magnitude and 
sign but not direction.

force.length ×• Dimensions of  work are Units are
( ) ( )( ) J 1.356lb1ftm 1N 1 J 1 =⋅=joule
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Work of a Force

• Work of a force during a finite displacement,
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• Work is represented by the area under the 
curve of Ft plotted against s.
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Work of a Force
• Work of a constant force in rectilinear motion,

( ) xFU ∆=→ αcos21

• Work of the force of gravity,

( ) yWyyW

dyWU
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dzFdyFdxFdU

y

y

zyx

∆−=−−=

−=

−=

++=

∫→

12

21
2

1

• Work of the weight is equal to product of 
weight W and vertical displacement ∆y.

• Work of the weight is positive when ∆y < 0, 
i.e., when the weight moves down.

© 2003 The McGraw-Hill Companies, Inc. All rights reserved. 

Vector Mechanics for Engineers: Dynamics
Seventh
Edition

13 - 6

Work of a Force
• Magnitude of the force exerted by a spring is 

proportional to deflection,

( )lb/in.or  N/mconstant  spring =
=

k
kxF

• Work of the force exerted by spring,
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• Work of the force exerted by spring is positive 
when x2 < x1, i.e., when the spring is returning to 
its undeformed position.

• Work of the force exerted by the spring is equal to 
negative of area under curve of F plotted against x,

( ) xFFU ∆+−=→ 212
1

21
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Work of a Force

Forces which do not do work (ds = 0 or cos α = 0):

• weight of a body when its center of gravity moves 
horizontally.

• reaction at a roller moving along its track, and

• reaction at frictionless surface when body in contact 
moves along surface,

• reaction at frictionless pin supporting rotating body,
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Particle Kinetic Energy: Principle of Work & Energy
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• Consider a particle of mass m acted upon by force F
r

• Integrating from A1 to A2 ,
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• The work of the force      is equal to the change in 
kinetic energy of the particle.

F
r

• Units of work and kinetic energy are the same:
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Applications of the Principle of Work and Energy
• Wish to determine velocity of pendulum bob 

at A2.  Consider work & kinetic energy.

• Force      acts normal to path and does no 
work.

P
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• Velocity found without determining 
expression for acceleration and integrating.

• All quantities are scalars and can be added 
directly.

• Forces which do no work are eliminated from 
the problem.
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Applications of the Principle of Work and Energy
• Principle of work and energy cannot be 

applied to directly determine the acceleration 
of the pendulum bob.

• Calculating the tension in the cord requires 
supplementing the method of work and energy 
with an application of Newton’s second law.

• As the bob passes through A2 ,
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Power and Efficiency
• rate at which work is done.

vF
dt

rdF
dt

dU
Power

rr

rr

•=

•
==

=

• Dimensions of power are work/time or force*velocity.  
Units for power are

W746
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Sample Problem 13.2

Two blocks are joined by an inextensible 
cable as shown.  If the system is released 
from rest, determine the velocity of block 
A after it has moved 2 m.  Assume that 
the coefficient of friction between block A
and the plane is µk = 0.25 and that the 
pulley is weightless and frictionless.

SOLUTION:

• Apply the principle of work and 
energy separately to blocks A and B.

• When the two relations are combined, 
the work of the cable forces cancel.  
Solve for the velocity.
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Sample Problem 13.2
SOLUTION:
• Apply the principle of work and energy separately 

to blocks A and B.
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Sample Problem 13.2
• When the two relations are combined, the work of the 

cable forces cancel.  Solve for the velocity.

( ) ( )( ) ( ) 2
2
1 kg200m2N490m2 vFC =−

( ) ( )( ) ( ) 2
2
1 kg300m2N2940m2 vFc =+−

( )( ) ( )( ) ( )

( ) 2
2
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2
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v

v

=

+=−

sm 43.4=v
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Sample Problem 13.3

A spring is used to stop a 60 kg package 
which is sliding on a horizontal surface.  
The spring has a constant k = 20 kN/m 
and is held by cables so that it is initially 
compressed 120 mm.  The package has a 
velocity of 2.5 m/s in the position shown 
and the maximum deflection of the spring 
is 40 mm.

Determine (a) the coefficient of kinetic 
friction between the package and surface 
and (b) the velocity of the package as it 
passes again through the position shown.

SOLUTION:

• Apply the principle of work and energy 
between the initial position and the 
point at which the spring is fully 
compressed and the velocity is zero.  
The only unknown in the relation is the 
friction coefficient.

• Apply the principle of work and energy 
for the rebound of the package.  The 
only unknown in the relation is the 
velocity at the final position.
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Sample Problem 13.3
SOLUTION:
• Apply principle of work and energy between initial 

position and the point at which spring is fully compressed.
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Sample Problem 13.3
• Apply the principle of work and energy for the rebound 

of the package.  
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Sample Problem 13.4

A 2000 lb car starts from rest at point 1 
and moves without friction down the 
track shown.

Determine:

a) the force exerted by the track on 
the car at point 2, and 

b) the minimum safe value of the 
radius of curvature at point 3.

SOLUTION:

• Apply principle of work and energy to 
determine velocity at point 2.

• Apply Newton’s second law to find 
normal force by the track at point 2.

• Apply principle of work and energy to 
determine velocity at point 3.

• Apply Newton’s second law to find 
minimum radius of curvature at point 3 
such that a positive normal force is 
exerted by the track.
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Sample Problem 13.4
SOLUTION:
• Apply principle of work and energy to determine 

velocity at point 2.
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• Apply Newton’s second law to find normal force by 
the track at point 2.
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Sample Problem 13.4
• Apply principle of work and energy to determine 

velocity at point 3.

( )

( ) ( )( ) sft1.40sft2.32ft252ft252
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• Apply Newton’s second law to find minimum radius of 
curvature at point 3 such that a positive normal force is 
exerted by the track.
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Sample Problem 13.5

The dumbwaiter D and its load have a 
combined weight of 600 lb, while the 
counterweight C weighs 800 lb.

Determine the power delivered by the 
electric motor M when the dumbwaiter 
(a) is moving up at a constant speed of 
8 ft/s and (b) has an instantaneous 
velocity of 8 ft/s and an acceleration of 
2.5 ft/s2, both directed upwards.

SOLUTION:
Force exerted by the motor 
cable has same direction as 
the dumbwaiter velocity.  
Power delivered by motor is 
equal to  FvD, vD = 8 ft/s.

• In the first case, bodies are in uniform 
motion.  Determine force exerted by 
motor cable from conditions for static 
equilibrium.

• In the second case, both bodies are 
accelerating.  Apply Newton’s 
second law to each body to 
determine the required motor cable 
force.
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Sample Problem 13.5
• In the first case, bodies are in uniform motion.  

Determine force exerted by motor cable from 
conditions for static equilibrium.

( )( )
slbft1600

sft8lb 200
⋅=

== DFvPower

( ) hp 91.2
slbft550

hp1slbft1600 =
⋅

⋅=Power

Free-body C:
:0=↑+ ∑ yF lb 4000lb8002 ==− TT

Free-body D:

:0=↑+ ∑ yF
lb 200lb 400lb600lb600

0lb600
=−=−=

=−+
TF

TF
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Sample Problem 13.5
• In the second case, both bodies are accelerating.  Apply 

Newton’s second law to each body to determine the required 
motor cable force.

↓=−=↑= 2
2
12 sft25.1sft5.2 DCD aaa

Free-body C:

:CCy amF =↓+ ∑ ( ) lb5.38425.1
2.32

8002800 ==− TT

Free-body D:

:DDy amF =↑+ ∑ ( )

lb 1.2626.466005.384

5.2
2.32

600600

==−+

=−+

FF

TF

( )( ) slbft2097sft8lb 1.262 ⋅=== DFvPower

( ) hp 81.3
slbft550

hp1slbft2097 =
⋅

⋅=Power
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Potential Energy

2121 yWyWU −=→

• Work of the force of gravity    ,W
r

• Work is independent of path followed; depends 
only on the initial and final values of Wy.

=

= WyVg

potential energy of the body with respect 
to force of gravity.

( ) ( )
2121 gg VVU −=→

• Units of work and potential energy are the same:
JmN =⋅== WyVg

• Choice of datum from which the elevation y is 
measured is arbitrary.
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Potential Energy
• Previous expression for potential energy of a body 

with respect to gravity is only valid when the 
weight of the body can be assumed constant.

• For a space vehicle, the variation of the force of 
gravity with distance from the center of the earth 
should be considered.

• Work of a gravitational force,

12
21 r

GMm
r

GMmU −=→

• Potential energy Vg when the variation in the 
force of gravity can not be neglected,

r
WR

r
GMmVg

2
−=−=
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Potential Energy
• Work of the force exerted by a spring depends 

only on the initial and final deflections of the 
spring,

2
22

12
12

1
21 kxkxU −=→

• The potential energy of the body with respect 
to the elastic force,

( ) ( )2121

2
2
1

ee

e

VVU

kxV

−=

=

→

• Note that the preceding expression for Ve is 
valid only if the deflection of the spring is 
measured from its undeformed position.
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Conservative Forces
• Concept of potential energy can be applied if the 

work of the force is independent of the path 
followed by its point of application. 

( ) ( )22211121 ,,,, zyxVzyxVU −=→
Such forces are described as conservative forces.

• For any conservative force applied on a closed path,
0=•∫ rdF rr

• Elementary work corresponding to displacement 
between two neighboring points,
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Conservation of Energy
• Work of a conservative force,

2121 VVU −=→

• Concept of work and energy,
1221 TTU −=→

• Follows that

constant
2211

=+=
+=+

VTE
VTVT

• When a particle moves under the action of 
conservative forces, the total mechanical 
energy is constant.

l

l

WVT
WVT

=+
==

11

11 0

( )

l

ll

WVT

VWg
g

WmvT

=+

====

22

2
2
22

1
2 02

2
1 • Friction forces are not conservative.  Total 

mechanical energy of a system involving 
friction decreases.

• Mechanical energy is dissipated by friction 
into thermal energy.  Total energy is constant.
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Sample Problem 13.6

A 20 lb collar slides without friction 
along a vertical rod as shown.  The 
spring attached to the collar has an 
undeflected length of 4 in. and a 
constant of 3 lb/in.

If the collar is released from rest at 
position 1, determine its velocity after 
it has moved 6 in. to position 2.

SOLUTION:

• Apply the principle of conservation of 
energy between positions 1 and 2.

• The elastic and gravitational potential 
energies at 1 and 2 are evaluated from 
the given information.  The initial kinetic 
energy is zero.

• Solve for the kinetic energy and 
velocity at 2.
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Sample Problem 13.6
SOLUTION:
• Apply the principle of conservation of energy between 

positions 1 and 2.

Position 1: ( )( )

0

lbft20lbin.24

lbin.24in. 4in. 8in.lb3

1

1

2
2
12

12
1

=

⋅=+⋅=+=

⋅=−==

T

VVV

kxV

ge

e

Position 2: ( )( )
( )( )

2
2

2
2

2
22

1
2

2

2
2
12

22
1

311.0
2.32

20
2
1

lbft 5.5lbin. 6612054

lbin. 120in. 6lb 20

lbin.54in. 4in. 01in.lb3

vvmvT

VVV

WyV

kxV

ge

g

e

===

⋅−=⋅−=−=+=

⋅−=−==

⋅=−==

Conservation of Energy:

lbft 5.50.311lbft 20 2
2

2211

⋅−=⋅+

+=+

v

VTVT

↓= sft91.42v
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Sample Problem 13.7

The 0.5 lb pellet is pushed against the 
spring and released from rest at A.  
Neglecting friction, determine the 
smallest deflection of the spring for 
which the pellet will travel around the 
loop and remain in contact with the 
loop at all times.

SOLUTION:

• Since the pellet must remain in contact 
with the loop, the force exerted on the 
pellet must be greater than or equal to 
zero.  Setting the force exerted by the 
loop to zero, solve for the minimum 
velocity at D.

• Apply the principle of conservation of 
energy between points A and D. Solve 
for the spring deflection required to 
produce the required velocity and 
kinetic energy at D.
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Sample Problem 13.7
SOLUTION:
• Setting the force exerted by the loop to zero, solve for the 

minimum velocity at D.
:nn maF =↓+ ∑

( )( ) 222

2

sft4.64sft32.2ft 2 ===

==

rgv

rvmmgmaW

D

Dn

• Apply the principle of conservation of energy between 
points A and D.

( )
0

18ftlb360

1

22
2
12

2
1

1

=

==+=+=

T

xxkxVVV ge

( )( )

( ) lbft5.0sft4.64
sft2.32

lb5.0
2
1

lbft2ft4lb5.00

22
2

2
2
1

2

2

⋅===

⋅==+=+=

D

ge

mvT

WyVVV

25.0180 2
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+=+

+=+

x

VTVT

in. 47.4ft 3727.0 ==x
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Principle of Impulse and Momentum
• From Newton’s second law,

( ) == vmvm
dt
dF rrr

linear momentum

2211

21  force  theof impulse 
2

1

vmvm

FdtF
t

t
rr

rr

=+

==

→

→∫

Imp

Imp

• The final momentum of the particle can be 
obtained by adding vectorially its initial 
momentum and the impulse of the force during 
the time interval.

( )

12
2

1

vmvmdtF

vmddtF
t

t

rrr

rr

−=

=

∫

• Dimensions of the impulse of 
a force are  

force*time.

• Units for the impulse of a 
force are

( ) smkgssmkgsN 2 ⋅=⋅⋅=⋅
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Impulsive Motion
• Force acting on a particle during a very short 

time interval that is large enough to cause a 
significant change in momentum is called an 
impulsive force.

• When impulsive forces act on a particle,

21 vmtFvm rrr =∆+ ∑

• When a baseball is struck by a bat, contact 
occurs over a short time interval but force is 
large enough to change sense of ball motion.

• Nonimpulsive forces are forces for which
is small and therefore, may be 

neglected.
tF∆

r
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Sample Problem 13.10

An automobile weighing 4000 lb is 
driven down a 5o incline at a speed of 
60 mi/h when the brakes are applied, 
causing a constant total braking force of 
1500 lb.  

Determine the time required for the 
automobile to come to a stop.

SOLUTION:

• Apply the principle of impulse and 
momentum.  The impulse is equal to the 
product of the constant forces and the 
time interval.
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Sample Problem 13.10
SOLUTION:
• Apply the principle of impulse and 

momentum.  

2211 vmvm rr =+ ∑ →Imp

Taking components parallel to the 
incline,

( )

( ) ( ) 015005sin4000sft88
2.32

4000

05sin1

=−°+⎟
⎠

⎞
⎜
⎝

⎛

=−°+

tt

FttWmv

s49.9=t
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Sample Problem 13.11

A 4 oz baseball is pitched with a 
velocity of 80 ft/s.  After the ball is hit 
by the bat, it has a velocity of 120 ft/s 
in the direction shown.  If the bat and 
ball are in contact for 0.015 s, 
determine the average impulsive force 
exerted on the ball during the impact.

SOLUTION:

• Apply the principle of impulse and 
momentum in terms of horizontal and 
vertical component equations.
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Sample Problem 13.11
SOLUTION:
• Apply the principle of impulse and momentum in 

terms of horizontal and vertical component equations.

2211 vmvm rr =+ →Imp

x

y

x component equation:

( ) ( ) ( )

lb89

40cos120
2.32

16415.080
2.32

164
40cos21

=

°=+−

°=∆+−

x

x

x

F

F

mvtFmv

y component equation:

( ) ( )

lb9.39

40cos120
2.32

16415.0

40sin0 2

=

°=

°=∆+

y

y

y

F

F

mvtF

( ) ( ) lb5.97,lb9.39lb89 =+= FjiF
rrr
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Sample Problem 13.12

A 10 kg package drops from a chute 
into a 24 kg cart with a velocity of 3 
m/s.  Knowing that the cart is initially at 
rest and can roll freely, determine (a)
the final velocity of the cart, (b) the 
impulse exerted by the cart on the 
package, and (c) the fraction of the 
initial energy lost in the impact.

SOLUTION:

• Apply the principle of impulse and 
momentum to the package-cart system 
to determine the final velocity.

• Apply the same principle to the package 
alone to determine the impulse exerted 
on it from the change in its momentum.
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Sample Problem 13.12
SOLUTION:
• Apply the principle of impulse and momentum to the package-cart 

system to determine the final velocity.

( ) 2211 vmmvm cpp
rr +=+ ∑ →Imp

x

y

x components: ( )
( )( ) ( ) 2

21

kg 25kg 1030cosm/s 3kg 10

030cos

v

vmmvm cpp

+=°

+=+°

m/s 742.02 =v
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Sample Problem 13.12
• Apply the same principle to the package alone to determine the impulse 

exerted on it from the change in its momentum.

x

y

2211 vmvm pp
rr =+ ∑ →Imp

x components:
( )( ) ( ) 2

21

kg 1030cosm/s 3kg 10

30cos

vtF

vmtFvm

x

pxp

=∆+°

=∆+°

sN56.18 ⋅−=∆tFx

y components:
( )( ) 030sinm/s 3kg 10

030sin1

=∆+°−

=∆+°−

tF

tFvm

y

yp

sN15 ⋅=∆tFy

( ) ( ) sN 9.23sN 51sN 56.1821 ⋅=∆⋅+⋅−=∆=∑ → tFjitF
rrr

Imp
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Sample Problem 13.12

To determine the fraction of energy lost,

( )( )

( ) ( )( ) J 63.9sm742.0kg 25kg 10

J 45sm3kg 10
2

2
12

22
1

1

2
2
12

12
1

1

=+=+=

===

vmmT

vmT

cp

p

786.0
J 45

J9.63J 45
1

21 =
−

=
−
T

TT
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Problem 13.150
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Problem 13.154
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Impact
• Impact:  Collision between two bodies which 

occurs during a small time interval and during 
which the bodies exert large forces on each other.

• Line of Impact:  Common normal to the surfaces 
in contact during impact.

• Central Impact:  Impact for which the mass 
centers of the two bodies lie on the line of impact;  
otherwise, it is an eccentric impact..

Direct Central Impact

• Direct Impact:  Impact for which the velocities of 
the two bodies are directed along the line of 
impact.

Oblique Central Impact

• Oblique Impact:  Impact for which one or both of 
the bodies move along a line other than the line of 
impact.
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Direct Central Impact
• Bodies moving in the same straight line, 

vA > vB .

• Upon impact the bodies undergo a
period of deformation, at the end of which, 
they are in contact and moving at a 
common velocity.

• A period of restitution follows during 
which the bodies either regain their 
original shape or remain permanently 
deformed.

• Wish to determine the final velocities of the 
two bodies.  The total momentum of the 
two body system is preserved,

BBBBBBAA vmvmvmvm ′+′=+

• A second relation between the final 
velocities is required.
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Direct Central Impact

• Period of deformation: umPdtvm AAA =− ∫

• Period of restitution: AAA vmRdtum ′=− ∫
10 ≤≤

−
′−

==

=

∫
∫

e
uv

vu
Pdt
Rdt

nrestitutiooftcoefficiene

A

A

• A similar analysis of particle B yields
B

B
vu

uv e
−

−′
=

• Combining the relations leads to the desired 
second relation between the final velocities.

( )BAAB vvevv −=′−′

• Perfectly plastic impact, e = 0:  vvv AB ′=′=′ ( )vmmvmvm BABBAA ′+=+

• Perfectly elastic impact, e = 1:
Total energy and total momentum conserved.

BAAB vvvv −=′−′
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Problems Involving Energy and Momentum
• Three methods for the analysis of kinetics problems:

- Direct application of Newton’s second law
- Method of work and energy
- Method of impulse and momentum

• Select the method best suited for the problem or part of a problem 
under consideration.
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Problem 13.176
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Sample Problem 13.17

A 30 kg block is dropped from a height 
of 2 m onto the the 10 kg pan of a 
spring scale.  Assuming the impact to 
be perfectly plastic, determine the 
maximum deflection of the pan.  The 
constant of the spring is k = 20 kN/m.

SOLUTION:

• Apply the principle of conservation of 
energy to determine the velocity of the 
block at the instant of impact.

• Since the impact is perfectly plastic, the 
block and pan move together at the same 
velocity after impact.  Determine that 
velocity from the requirement that the 
total momentum of the block and pan is 
conserved.

• Apply the principle of conservation of 
energy to determine the maximum 
deflection of the spring.
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Sample Problem 13.17
SOLUTION:
• Apply principle of conservation of energy to 

determine velocity of the block at instant of impact.

( )( )( )
( ) ( )( )

( )( ) ( ) sm26.6030 J 5880

030

J 588281.9300

2
2
22

1
2211

2
2
22

12
22

1
2

11

=+=+

+=+

===

====

AA

AAA

A

vv

VTVT

VvvmT

yWVT

• Determine velocity after impact from requirement that 
total momentum of the block and pan is conserved.

( ) ( ) ( )
( )( ) ( ) sm70.41030026.630 33

322
=+=+

+=+

vv
vmmvmvm BABBAA
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Sample Problem 13.17

Initial spring deflection due to 
pan weight:

( )( ) m1091.4
1020

81.910 3
33

−×=
×

==
k

Wx B

• Apply the principle of conservation of energy to 
determine the maximum deflection of the spring.

( ) ( )( )

( )( )

( )( )

( ) ( )
( ) ( ) 2

4
3

2
13

4

2
4

3
2
1

34

2
42

1
4

4

233
2
12

32
1

3

2
2
12

32
1

3

10201091.4392

1020392

0

J 241.01091.410200

J 4427.41030

xx

xxx

kxhWWVVV

T

kx

VVV

vmmT

BAeg

eg

BA

×+×−−=

×+−−=

+−+=+=

=

=××=+=

+=

=+=+=

−

−

( ) ( )
m 230.0

10201091.43920241.0442

4

2
4

3
2
13

4

4433

=

×+×−−=+

+=+
−

x

xx

VTVT

m 1091.4m 230.0 3
34

−×−=−= xxh m 225.0=h
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Problem 13.177
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Oblique Central Impact (freely moving particles)
• Final velocities are 

unknown in magnitude 
and direction.  Four 
equations are required.

• No tangential impulse component; 
tangential component of momentum 
for each particle is conserved.

( ) ( ) ( ) ( )tBtBtAtA vvvv ′=′=

• Normal component of total 
momentum of the two particles is 
conserved.

( ) ( ) ( ) ( )nBBnAAnBBnAA vmvmvmvm ′+′=+

• Normal components of relative 
velocities before and after impact 
are related by the coefficient of 
restitution.

( ) ( ) ( ) ( )[ ]nBnAnAnB vvevv −=′−′
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Sample Problem 13.15

The magnitude and direction of the 
velocities of two identical 
frictionless balls before they strike 
each other are as shown.  Assuming 
e = 0.9, determine the magnitude 
and direction of the velocity of each 
ball after the impact.

SOLUTION:

• Resolve the ball velocities into components 
normal and tangential to the contact plane.

• Tangential component of momentum for 
each ball is conserved.

• Total normal component of the momentum 
of the two ball system is conserved.  

• The normal relative velocities of the 
balls are related by the coefficient of 
restitution.

• Solve the last two equations simultaneously 
for the normal velocities of the balls after 
the impact.
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Sample Problem 13.15
SOLUTION:
• Resolve the ball velocities into components normal and 

tangential to the contact plane.
( ) sft0.2630cos =°= AnA vv ( ) sft0.1530sin =°= AtA vv

( ) sft0.2060cos −=°−= BnB vv ( ) sft6.3460sin =°= BtB vv

• Tangential component of momentum for each ball is 
conserved.
( ) ( ) sft0.15==′ tAtA vv ( ) ( ) sft6.34==′ tBtB vv

• Total normal component of the momentum of the two 
ball system is conserved.  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) 0.6
0.200.26

=′+′

′+′=−+

′+′=+

nBnA

nBnA

nBBnAAnBBnAA

vv
vmvmmm

vmvmvmvm
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Sample Problem 13.15

°=⎟
⎠
⎞

⎜
⎝
⎛=′

+=′

°=⎟
⎠
⎞

⎜
⎝
⎛=′

+−=′

−

−

6.55
7.23
6.34tansft9.41

6.347.23

3.40
7.17
0.15tansft2.23

0.157.17

1

1

B

ntB

A

ntA

v

v

v

v

λλ

λλ

rrr

rrr

t

n

• The normal relative velocities of the balls are related by the 
coefficient of restitution.

( ) ( ) ( ) ( )[ ]
( )[ ] 4.410.200.2690.0 =−−=

−=′−′ nBnAnBnA vvevv

• Solve the last two equations simultaneously for the normal 
velocities of the balls after the impact.

( ) sft7.17−=′ nAv ( ) sft7.23=′ nBv
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Sample Problem 13.16

Ball B is hanging from an inextensible 
cord.  An identical ball A is released 
from rest when it is just touching the 
cord and acquires a velocity v0 before 
striking ball B.  Assuming perfectly 
elastic impact (e = 1) and no friction, 
determine the velocity of each ball 
immediately after impact.

SOLUTION:

• Determine orientation of impact line of 
action.

• The momentum component of ball A
tangential to the contact plane is 
conserved.

• The total horizontal momentum of the 
two ball system is conserved.

• The relative velocities along the line of 
action before and after the impact are 
related by the coefficient of restitution.

• Solve the last two expressions for the 
velocity of ball A along the line of action 
and the velocity of ball B which is 
horizontal.
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Sample Problem 13.16
SOLUTION:
• Determine orientation of impact line of action.

°=

==

30

5.0
2

sin

θ

θ
r

r
• The momentum component of ball A

tangential to the contact plane is 
conserved.

( )
( ) 0

0

5.0
030sin

vv
vmmv

vmtFvm

tA

tA

AA

=′

′=+°

′=∆+ rrr

• The total horizontal (x component) 
momentum of the two ball system is 
conserved.

( ) ( )
( ) ( )

( ) 0

0

433.05.0
30sin30cos5.00

30sin30cos0

vvv
vvv

vmvmvm
vmvmtTvm

BnA

BnA

BnAtA

BAA

=′+′

′−°′−°=

′−°′−°′=

′+′=∆+ rrrr
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Sample Problem 13.16
• The relative velocities along the line of action before 

and after the impact are related by the coefficient of 
restitution.

( ) ( ) ( ) ( )[ ]
( )

( ) 0

0

866.05.0
030cos30sin

vvv
vvv

vvevv

nAB

nAB

nBnAnAnB

=′−′

−°=′−°′

−=′−′

• Solve the last two expressions for the velocity of ball 
A along the line of action and the velocity of ball B
which is horizontal.

( ) 00 693.0520.0 vvvv BnA =′−=′

←=′
°=°−°=

°=⎟
⎠
⎞

⎜
⎝
⎛==′

−=′

−

0

1
0

00

693.0
1.16301.46

1.46
5.0

52.0tan721.0

520.05.0

vv

vv

vvv

B

A

ntA

α

β

λλ
rrr
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Oblique Central Impact (one particle is constrained in its motion)

• Block constrained to move along horizontal 
surface.

• Impulses from internal forces
along the n axis and from external force
exerted by horizontal surface and directed 
along the vertical to the surface.

FF
rr

−  and 
extF
r

• Final velocity of ball unknown in direction and 
magnitude and unknown final block velocity 
magnitude.  Three equations required.
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Oblique Central Impact

• Tangential momentum of ball is 
conserved.

( ) ( )tBtB vv ′=

• Total horizontal momentum of block 
and ball is conserved.

( ) ( ) ( ) ( )xBBAAxBBAA vmvmvmvm ′+′=+

• Normal component of relative 
velocities of block and ball are related 
by coefficient of restitution.

( ) ( ) ( ) ( )[ ]nBnAnAnB vvevv −=′−′

• Note:  Validity of last expression does not follow from previous relation for 
the coefficient of restitution.  A similar but separate derivation is required. 
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Sample Problem 13.14(impact of a particle with a massive rigid body)

A ball is thrown against a frictionless, 
vertical wall.  Immediately before the 
ball strikes the wall, its velocity has a 
magnitude v and forms angle of 30o

with the horizontal.  Knowing that 
e = 0.90, determine the magnitude and 
direction of the velocity of the ball as 
it rebounds from the wall. 

SOLUTION:

• Resolve ball velocity into components 
normal and tangential to wall.

• Impulse exerted by the wall is normal 
to the wall.  Component of ball 
momentum tangential to wall is 
conserved.

• Assume that the wall has infinite mass 
so that wall velocity before and after 
impact is zero.  Apply coefficient of 
restitution relation to find change  in 
normal  relative velocity between wall 
and ball, i.e., the normal ball velocity.
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Sample Problem 13.14

• Component of ball momentum tangential to wall is conserved.

vvv tt 500.0==′

• Apply coefficient of restitution relation with zero wall 
velocity.

( )
( ) vvv
vev

n

nn

779.0866.09.0
00

−=−=′
−=′−

SOLUTION:
• Resolve ball velocity into components parallel and 

perpendicular to wall.
vvvvvv tn 500.030sin866.030cos =°==°=

n

t

°=⎟
⎠
⎞

⎜
⎝
⎛=′

+−=′

− 7.32
500.0
779.0tan926.0

500.0779.0

1vv

vvv tn λλ
rrr
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Quiz 2

Block B having a mass of 9 kg is initially at 
rest as shown on the upper surface of a 22.5 
kg wedge A which is supported by a 
horizontal surface. A 2 kg block C is 
connected to block B by a cord, which 
passes over a pulley of negligible mass. 
Using computational software and denoting 
by the coefficient of friction at all surfaces, 
calculate the initial acceleration of the 
wedge and the initial acceleration of block B 
relative to the wedge for values of µ≥0. Use 
0.01 increments for until the wedge does not 
move and then use 0.1 increments until no 
motion occurs. 
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%% Problem 12.C1 and Quiz 2
clear all, clc, fprintf('\n\n\t   Solution of Problem 12.C1 and Quiz 2 ')
g = 9.81;

for me242=1:2

if me242==1
Wa = 200; % homework
Wb = 80;  % homework
Wc = 18;  % homework
fprintf('\n\n\t\t\t\t----Problem 12.C1----\n\n')

elseif me242==2
Wa = 22.5*g; % quiz2
Wb = 9*g;    % quiz2
Wc = 2*g;    % quiz2
fprintf('\n\n\t\t\t\t----Quiz 2----\n\n')

end
ma = Wa/g;
mb = Wb/g;
mc = Wc/g;

t = 30;
th = t*pi/180;
Mu = 0;
A = (1-Mu.^2)*sin(th)-2*Mu*cos(th);
a_A = g*(A*Wb*cos(th)-Wa*Mu)/(Wa+Wb*A*sin(th));
% print heading
fprintf('  Mu      Accel. of A (m/s^2)     Accel. of B wrt A, (m/s^2)\n');
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while a_A > 0
a_BwA = (1/(Wb+Wc))*(g*(Wc-Wb*(Mu*cos(th)-sin(th)))+a_A*(Wb*Mu*sin(th)+(Wc+Wb)*cos(th)));
fprintf('  %3.2f          %4.3f                       %4.3f\n',Mu,a_A,a_BwA);
Mu = Mu+0.01;
A = (1-Mu.^2)*sin(th)-2*Mu*cos(th);
a_A = g*(A*Wb*cos(th)-Wa*Mu)/(Wa+Wb*A*sin(th));

end
% Increase Mu to the next tenth
Mu = 0.20;
a_BwA = (g/(Wb+Wc))*(Wc-Wb*(Mu*cos(th)-sin(th)));
% print heading
fprintf('\n');
fprintf('  Mu      Accel. of B wrt A, (m/s^2)\n');
while a_BwA > 0

a_BwA = (g/(Wb+Wc))*(Wc-Wb*(Mu*cos(th)-sin(th)));
if a_BwA > 0

fprintf('  %3.2f            %4.3f\n',Mu,a_BwA);
end
Mu = Mu+0.10;

end

end


