

Vector Mechanics for Engineers: Dynamics

Introduction

- Previously, problems dealing with the motion of particles were solved through the fundamental equation of motion, $\vec{F}=m \vec{a}$. Current chapter introduces two additional methods of analysis.
- Method of work and energy: directly relates force, mass, velocity and displacement.
- Method of impulse and momentum: directly relates force, mass, velocity, and time.

Vector Mechanics for Engineers: Dynamics Work of a Force

Forces which do not do work ($d s=0$ or $\cos \alpha=0$):

- reaction at frictionless pin supporting rotating body,
- reaction at frictionless surface when body in contact moves along surface,
- reaction at a roller moving along its track, and
- weight of a body when its center of gravity moves horizontally.

Vector Mechanics for Engineers: Dynamics

Particle Kinetic Energy: Principle of Work \& Energy

- Consider a particle of mass m acted upon by force \vec{F}

$$
\begin{aligned}
F_{t} & =m a_{t}=m \frac{d v}{d t} \\
& =m \frac{d v}{d s} \frac{d s}{d t}=m v \frac{d v}{d s} \\
F_{t} d s & =m v d v
\end{aligned}
$$

- Integrating from A_{1} to A_{2},

$$
\begin{aligned}
& \int_{s_{1}}^{s_{2}} F_{t} d s=m \int_{v_{1}}^{v_{2}} v d v=\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2} \\
& U_{1 \rightarrow 2}=T_{2}-T_{1} \quad T=\frac{1}{2} m v^{2}=\text { kinetic energy }
\end{aligned}
$$

- The work of the force \vec{F} is equal to the change in kinetic energy of the particle.
- Units of work and kinetic energy are the same:

$$
T=\frac{1}{2} m v^{2}=\mathrm{kg}\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}=\left(\mathrm{kg} \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \mathrm{m}=\mathrm{N} \cdot \mathrm{~m}=\mathrm{J}
$$

Vector Mechanics for Engineers: Dynamics Applications of the Principle of Work and Energy

- Wish to determine velocity of pendulum bob at A_{2}. Consider work \& kinetic energy.
- Force \vec{P} acts normal to path and does no work.

$$
\begin{aligned}
T_{1}+U_{1 \rightarrow 2} & =T_{2} \\
0+W l & =\frac{1}{2} \frac{W}{g} v_{2}^{2} \\
v_{2} & =\sqrt{2 g l}
\end{aligned}
$$

- Velocity found without determining expression for acceleration and integrating.
- All quantities are scalars and can be added directly.
- Forces which do no work are eliminated from the problem.

Vector Mechanics for Engineers: Dynamics Applications of the Principle of Work and Energy

 - Principle of work and energy cannot be applied to directly determine the acceleration of the pendulum bob.
 - Calculating the tension in the cord requires supplementing the method of work and energy with an application of Newton's second law.
 - As the bob passes through A_{2},
 $$
\begin{aligned} \sum F_{n} & =m a_{n} \\ P-W & =\frac{W}{g} \frac{v_{2}^{2}}{l} \\ P & =W+\frac{W}{g} \frac{2 g l}{l}=3 W \end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Power and Efficiency

- Power $=$ rate at which work is done.

$$
\begin{aligned}
& =\frac{d U}{d t}=\frac{\vec{F} \bullet d \vec{r}}{d t} \\
& =\vec{F} \bullet \vec{v}
\end{aligned}
$$

- Dimensions of power are work/time or force*velocity. Units for power are

$$
1 \mathrm{~W}(\text { watt })=1 \frac{\mathrm{~J}}{\mathrm{~s}}=1 \mathrm{~N} \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \text { or } 1 \mathrm{hp}=550 \frac{\mathrm{ft} \cdot \mathrm{lb}}{\mathrm{~s}}=746 \mathrm{~W}
$$

- $\eta=$ efficiency

$$
\begin{aligned}
& =\frac{\text { output work }}{\text { input work }} \\
& =\frac{\text { power output }}{\text { power input }}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.2

Two blocks are joined by an inextensible cable as shown. If the system is released from rest, determine the velocity of block A after it has moved 2 m . Assume that the coefficient of friction between block A and the plane is $\mu_{k}=0.25$ and that the pulley is weightless and frictionless.

SOLUTION:

- Apply the principle of work and energy separately to blocks A and B.
- When the two relations are combined, the work of the cable forces cancel. Solve for the velocity.
Vector Mechanics for Engineers: Dynamics Sample Problem 13.2

SOLUTION:
- Apply the principle of work and energy separately to blocks A and B.

$$
\begin{aligned}
& W_{A}=(200 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=1962 \mathrm{~N} \\
& F_{A}=\mu_{k} N_{A}=\mu_{k} W_{A}=0.25(1962 \mathrm{~N})=490 \mathrm{~N} \\
& T_{1}+U_{1 \rightarrow 2}=T_{2}: \\
& 0+F_{C}(2 \mathrm{~m})-F_{A}(2 \mathrm{~m})=\frac{1}{2} m_{A} v^{2} \\
& F_{C}(2 \mathrm{~m})-(490 \mathrm{~N})(2 \mathrm{~m})=\frac{1}{2}(200 \mathrm{~kg}) v^{2} \\
& W_{B}=(300 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)=2940 \mathrm{~N} \\
& T_{1}+U_{1 \rightarrow 2}=T_{2}: \\
& 0-F_{C}(2 \mathrm{~m})+W_{B}(2 \mathrm{~m})=\frac{1}{2} m_{B} v^{2} \\
& \quad-F_{C}(2 \mathrm{~m})+(2940 \mathrm{~N})(2 \mathrm{~m})=\frac{1}{2}(300 \mathrm{~kg}) v^{2}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.2

- When the two relations are combined, the work of the cable forces cancel. Solve for the velocity.

$$
\begin{aligned}
F_{C}(2 \mathrm{~m})-(490 \mathrm{~N})(2 \mathrm{~m}) & =\frac{1}{2}(200 \mathrm{~kg}) v^{2} \\
-F_{C}(2 \mathrm{~m})+(2940 \mathrm{~N})(2 \mathrm{~m}) & =\frac{1}{2}(300 \mathrm{~kg}) v^{2}
\end{aligned}
$$

$$
(2940 \mathrm{~N})(2 \mathrm{~m})-(490 \mathrm{~N})(2 \mathrm{~m})=\frac{1}{2}(200 \mathrm{~kg}+300 \mathrm{~kg}) v^{2}
$$

$$
4900 \mathrm{~J}=\frac{1}{2}(500 \mathrm{~kg}) \mathrm{v}^{2}
$$

$$
v=4.43 \mathrm{~m} / \mathrm{s}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.3

A spring is used to stop a 60 kg package which is sliding on a horizontal surface. The spring has a constant $k=20 \mathrm{kN} / \mathrm{m}$ and is held by cables so that it is initially compressed 120 mm . The package has a velocity of $2.5 \mathrm{~m} / \mathrm{s}$ in the position shown and the maximum deflection of the spring is 40 mm .

Determine (a) the coefficient of kinetic friction between the package and surface and (b) the velocity of the package as it passes again through the position shown.

SOLUTION:

- Apply the principle of work and energy between the initial position and the point at which the spring is fully compressed and the velocity is zero. The only unknown in the relation is the friction coefficient.
- Apply the principle of work and energy for the rebound of the package. The only unknown in the relation is the velocity at the final position.

Vector Mechanics for Engineers: Dynamics

 Sample Problem 13.3

SOLUTION:

- Apply principle of work and energy between initial position and the point at which spring is fully compressed.
$T_{1}=\frac{1}{2} m v_{1}^{2}=\frac{1}{2}(60 \mathrm{~kg})(2.5 \mathrm{~m} / \mathrm{s})^{2}=187.5 \mathrm{~J} \quad T_{2}=0$
$\left(U_{1 \rightarrow 2}\right)_{f}=-\mu_{k} W x$ $=-\mu_{k}(60 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.640 \mathrm{~m})=-(377 \mathrm{~J}) \mu_{k}$
$P_{\text {min }}=k x_{0}=(20 \mathrm{kN} / \mathrm{m})(0.120 \mathrm{~m})=2400 \mathrm{~N}$
$P_{\max }=k\left(x_{0}+\Delta x\right)=(20 \mathrm{kN} / \mathrm{m})(0.160 \mathrm{~m})=3200 \mathrm{~N}$
$\left(U_{1 \rightarrow 2}\right)_{e}=-\frac{1}{2}\left(P_{\min }+P_{\max }\right) \Delta x$
$=-\frac{1}{2}(2400 \mathrm{~N}+3200 \mathrm{~N})(0.040 \mathrm{~m})=-112.0 \mathrm{~J}$
$U_{1 \rightarrow 2}=\left(U_{1 \rightarrow 2}\right)_{f}+\left(U_{1 \rightarrow 2}\right)_{e}=-(377 \mathrm{~J}) \mu_{k}-112 \mathrm{~J}$
$T_{1}+U_{1 \rightarrow 2}=T_{2}:$
$187.5 \mathrm{~J}-(377 \mathrm{~J}) \mu_{\mathrm{k}}-112 \mathrm{~J}=0$
$\mu_{k}=0.20$

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.4

A 2000 lb car starts from rest at point 1 and moves without friction down the track shown.

Determine:
a) the force exerted by the track on the car at point 2, and
b) the minimum safe value of the radius of curvature at point 3 .

SOLUTION:

- Apply principle of work and energy to determine velocity at point 2 .
- Apply Newton's second law to find normal force by the track at point 2 .
- Apply principle of work and energy to determine velocity at point 3 .
- Apply Newton's second law to find minimum radius of curvature at point 3 such that a positive normal force is exerted by the track.

Vector Mechanics for Engineers: Dynamics

 Sample Problem 13.4

- Apply principle of work and energy to determine velocity at point 3 .
$T_{1}+U_{1 \rightarrow 3}=T_{3} \quad 0+W(25 \mathrm{ft})=\frac{1}{2} \frac{W}{g} v_{3}^{2}$
$v_{3}^{2}=2(25 \mathrm{ft}) g=2(25 \mathrm{ft})(32.2 \mathrm{ft} / \mathrm{s}) \quad v_{3}=40.1 \mathrm{ft} / \mathrm{s}$
- Apply Newton's second law to find minimum radius of curvature at point 3 such that a positive normal force is exerted by the track.
$+\downarrow \sum F_{n}=m a_{n}:$
$W=m a_{n}$

$$
=\frac{W}{g} \frac{v_{3}^{2}}{\rho_{3}}=\frac{W}{g} \frac{2(25 \mathrm{ft}) g}{\rho_{3}} \quad \rho_{3}=50 \mathrm{ft}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.5

The dumbwaiter D and its load have a combined weight of 600 lb , while the counterweight C weighs 800 lb .

Determine the power delivered by the electric motor M when the dumbwaiter (a) is moving up at a constant speed of $8 \mathrm{ft} / \mathrm{s}$ and (b) has an instantaneous velocity of $8 \mathrm{ft} / \mathrm{s}$ and an acceleration of $2.5 \mathrm{ft} / \mathrm{s}^{2}$, both directed upwards.

SOLUTION:

- In the first case, bodies are in uniform motion. Determine force exerted by motor cable from conditions for static equilibrium.
- In the second case, both bodies are accelerating. Apply Newton's second law to each body to determine the required motor cable force.

Vector Mechanics for Engineers: Dynamics Potential Energy

- Work of the force of gravity \vec{W},
$U_{1 \rightarrow 2}=W y_{1}-W y_{2}$
- Work is independent of path followed; depends only on the initial and final values of $W y$.

$$
V_{g}=W y
$$

$=$ potential energy of the body with respect to force of gravity.

$$
U_{1 \rightarrow 2}=\left(V_{g}\right)_{1}-\left(V_{g}\right)_{2}
$$

- Choice of datum from which the elevation y is measured is arbitrary.
- Units of work and potential energy are the same:

$$
V_{g}=W y=\mathrm{N} \cdot \mathrm{~m}=\mathrm{J}
$$

Vector Mechanics for Engineers: Dynamics

Conservation of Energy

- Work of a conservative force,

$T_{1}=0 \quad V_{1}=W \ell$
$T_{1}+V_{1}=W \ell$
$T_{2}=\frac{1}{2} m v_{2}^{2}=\frac{1}{2} \frac{W}{g}(2 g \ell)=W \ell \quad V_{2}=0$
$T_{2}+V_{2}=W \ell$
- Concept of work and energy,

$$
U_{1 \rightarrow 2}=T_{2}-T_{1}
$$

- Follows that
$T_{1}+V_{1}=T_{2}+V_{2}$ $E=T+V=$ constant
- When a particle moves under the action of conservative forces, the total mechanical energy is constant.
- Friction forces are not conservative. Total mechanical energy of a system involving friction decreases.
- Mechanical energy is dissipated by friction into thermal energy. Total energy is constant.

Vector Mechanics for Engineers: Dynamics

 Sample Problem 13.6

A 20 lb collar slides without friction along a vertical rod as shown. The spring attached to the collar has an undeflected length of 4 in . and a constant of $3 \mathrm{lb} / \mathrm{in}$.

If the collar is released from rest at position 1, determine its velocity after it has moved 6 in. to position 2 .

SOLUTION:

- Apply the principle of conservation of energy between positions 1 and 2 .
- The elastic and gravitational potential energies at 1 and 2 are evaluated from the given information. The initial kinetic energy is zero.
- Solve for the kinetic energy and velocity at 2 .

Vector Mechanics for Engineers: Dynamics

 Sample Problem 13.6SOLUTION:

- Apply the principle of conservation of energy between positions 1 and 2.
Position 1: $V_{e}=\frac{1}{2} k x_{1}^{2}=\frac{1}{2}(3 \mathrm{lb} / \mathrm{in}.)(8 \mathrm{in} .-4 \mathrm{in} .)^{2}=24 \mathrm{in} . \mathrm{lb}$
$V_{1}=V_{e}+V_{g}=24 \mathrm{in} \cdot 1 \mathrm{lb}+0=2 \mathrm{ft} \cdot \mathrm{lb}$ $T_{1}=0$
Position 2: $V_{e}=\frac{1}{2} k x_{2}^{2}=\frac{1}{2}(3 \mathrm{lb} / \mathrm{in}.)(10 \mathrm{in} .-4 \mathrm{in} .)^{2}=54 \mathrm{in} . \cdot \mathrm{lb}$ $V_{g}=W y=(20 \mathrm{lb})(-6 \mathrm{in})=.-120 \mathrm{in} . \cdot \mathrm{lb}$ $V_{2}=V_{e}+V_{g}=54-120=-66 \mathrm{in} \cdot \cdot \mathrm{lb}=-5.5 \mathrm{ft} \cdot \mathrm{lb}$ $T_{2}=\frac{1}{2} m v_{2}^{2}=\frac{1}{2} \frac{20}{32.2} v_{2}^{2}=0.311 v_{2}^{2}$
Conservation of Energy:

$$
\begin{aligned}
& T_{1}+V_{1}=T_{2}+V_{2} \\
& 0+2 \mathrm{ft} \cdot \mathrm{lb}=0.311 v_{2}^{2}-5.5 \mathrm{ft} \cdot \mathrm{lb}
\end{aligned}
$$

$$
v_{2}=4.91 \mathrm{ft} / \mathrm{s} \downarrow
$$

Vector Mechanics for Engineers: Dynamics

 Sample Problem 13.7
SOLUTION:

The 0.5 lb pellet is pushed against the spring and released from rest at A. Neglecting friction, determine the smallest deflection of the spring for which the pellet will travel around the loop and remain in contact with the loop at all times.

- Since the pellet must remain in contact with the loop, the force exerted on the pellet must be greater than or equal to zero. Setting the force exerted by the loop to zero, solve for the minimum velocity at D.
- Apply the principle of conservation of energy between points A and D. Solve for the spring deflection required to produce the required velocity and kinetic energy at D.

Vector Mechanics for Engineers: Dynamics

Principle of Impulse and Momentum

- Dimensions of the impulse of a force are force*time.
- Units for the impulse of a force are $\mathrm{N} \cdot \mathrm{s}=\left(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}\right) \cdot \mathrm{s}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$
- From Newton's second law,
$\vec{F}=\frac{d}{d t}(m \vec{v}) \quad m \vec{v}=$ linear momentum $\vec{F} d t=d(m \vec{v})$
$\int_{t_{1}}^{t_{2}} \vec{F} d t=m \vec{v}_{2}-m \vec{v}_{1}$
$\int_{t_{1}}^{t_{2}} \vec{F} d t=\mathbf{I m p}_{1 \rightarrow 2}=$ impulse of the force \vec{F}
$m \vec{v}_{1}+\operatorname{Imp}_{1 \rightarrow 2}=m \vec{v}_{2}$
- The final momentum of the particle can be obtained by adding vectorially its initial momentum and the impulse of the force during the time interval.

Vector Mechanics for Engineers: Dynamics

 Impulsive Motion

- Force acting on a particle during a very short time interval that is large enough to cause a significant change in momentum is called an impulsive force.
- When impulsive forces act on a particle, $m \vec{v}_{1}+\sum \vec{F} \Delta t=m \vec{v}_{2}$
- When a baseball is struck by a bat, contact occurs over a short time interval but force is large enough to change sense of ball motion.
- Nonimpulsive forces are forces for which $\vec{F} \Delta t$ is small and therefore, may be neglected.

Vector Mechanics for Engineers: Dynamics Sample Problem 13.10

SOLUTION:

- Apply the principle of impulse and momentum. The impulse is equal to the product of the constant forces and the time interval.

An automobile weighing 4000 lb is driven down a 5° incline at a speed of $60 \mathrm{mi} / \mathrm{h}$ when the brakes are applied, causing a constant total braking force of 1500 lb .

Determine the time required for the automobile to come to a stop.

Vector Mechanics for Engineers: Dynamics

 Sample Problem 13.10
SOLUTION:

- Apply the principle of impulse and momentum.
$m \vec{v}_{1}+\sum \operatorname{Imp}_{1 \rightarrow 2}=m \vec{v}_{2}$

Taking components parallel to the incline,
$m v_{1}+\left(W \sin 5^{\circ}\right) t-F t=0$
$\left(\frac{4000}{32.2}\right)(88 \mathrm{ft} / \mathrm{s})+\left(4000 \sin 5^{\circ}\right) t-1500 t=0$
$t=9.49 \mathrm{~s}$
$13-36$

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.11

A 4 oz baseball is pitched with a velocity of $80 \mathrm{ft} / \mathrm{s}$. After the ball is hit by the bat, it has a velocity of $120 \mathrm{ft} / \mathrm{s}$ in the direction shown. If the bat and ball are in contact for 0.015 s , determine the average impulsive force exerted on the ball during the impact.

SOLUTION:

- Apply the principle of impulse and momentum in terms of horizontal and vertical component equations.

Vector Mechanics for Engineers: Dynamics

 Sample Problem 13.11
SOLUTION:

- Apply the principle of impulse and momentum in terms of horizontal and vertical component equations.

$$
m \vec{v}_{1}+\mathbf{I m p} \mathbf{p}_{1 \rightarrow 2}=m \vec{v}_{2}
$$

x component equation:

$$
\begin{aligned}
& -m v_{1}+F_{X} \Delta t=m v_{2} \cos 40^{\circ} \\
& -\frac{4 / 16}{32.2}(80)+F_{x}(0.15)=\frac{4 / 16}{32.2}\left(120 \cos 40^{\circ}\right) \\
& F_{X}=89 \mathrm{lb}
\end{aligned}
$$

y component equation:

$$
0+F_{y} \Delta t=m v_{2} \sin 40^{\circ}
$$

$$
F_{y}(0.15)=\frac{4 / 16}{32.2}\left(120 \cos 40^{\circ}\right)
$$

$$
F_{y}=39.9 \mathrm{lb}
$$

$$
\vec{F}=(89 \mathrm{lb}) \vec{i}+(39.9 \mathrm{lb}) \vec{j}, \quad F=97.5 \mathrm{lb}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.12

SOLUTION:

A 10 kg package drops from a chute into a 24 kg cart with a velocity of 3 m / s. Knowing that the cart is initially at rest and can roll freely, determine (a) the final velocity of the cart, (b) the impulse exerted by the cart on the package, and (c) the fraction of the initial energy lost in the impact.

- Apply the principle of impulse and momentum to the package-cart system to determine the final velocity.
- Apply the same principle to the package alone to determine the impulse exerted on it from the change in its momentum.

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.12

SOLUTION:

- Apply the principle of impulse and momentum to the package-cart system to determine the final velocity.

$$
m_{p} \vec{v}_{1}+\sum \mathbf{I m p}_{1 \rightarrow 2}=\left(m_{p}+m_{c}\right) \vec{v}_{2}
$$

x components:
$m_{p} v_{1} \cos 30^{\circ}+0=\left(m_{p}+m_{c}\right) v_{2}$
$(10 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s}) \cos 30^{\circ}=(10 \mathrm{~kg}+25 \mathrm{~kg}) \mathrm{v}_{2}$

$$
v_{2}=0.742 \mathrm{~m} / \mathrm{s}
$$

Vector Mechanics for Engineers: Dynamics

 Sample Problem 13.12- Apply the same principle to the package alone to determine the impulse exerted on it from the change in its momentum.

$$
\begin{array}{ll}
\\
& m_{p} \vec{v}_{1}+\sum \mathbf{I m p}_{1 \rightarrow 2}=m_{p} \vec{v}_{2} \\
x \text { components: } & m_{p} v_{1} \cos 30^{\circ}+F_{x} \Delta t=m_{p} v_{2} \\
(10 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s}) \cos 30^{\circ}+F_{x} \Delta t=(10 \mathrm{~kg}) v_{2} \\
& -m_{p} v_{1} \sin 30^{\circ}+F_{y} \Delta t=0 \\
& -(10 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s}) \sin 30^{\circ}+F_{y} \Delta t=0 \\
y \text { components: } \\
& \sum_{x} \Delta t=-18.56 \mathrm{~N} \cdot \mathrm{~s} \\
& \operatorname{Imp}_{1 \rightarrow 2}=\vec{F} \Delta t=(-18.56 \mathrm{~N} \cdot \mathrm{~s}) \vec{i}+(15 \mathrm{~N} \cdot \mathrm{~s}) \vec{j} \quad F \Delta t=23.9 \mathrm{~N} \cdot \mathrm{~s}
\end{array}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.12

To determine the fraction of energy lost,

$$
\begin{aligned}
& T_{1}=\frac{1}{2} m_{p} v_{1}^{2}=\frac{1}{2}(10 \mathrm{~kg})(3 \mathrm{~m} / \mathrm{s})^{2}=45 \mathrm{~J} \\
& T_{1}=\frac{1}{2}\left(m_{p}+m_{c}\right) v_{2}^{2}=\frac{1}{2}(10 \mathrm{~kg}+25 \mathrm{~kg})(0.742 \mathrm{~m} / \mathrm{s})^{2}=9.63 \mathrm{~J} \\
& \frac{T_{1}-T_{2}}{T_{1}}=\frac{45 \mathrm{~J}-9.63 \mathrm{~J}}{45 \mathrm{~J}}=0.786
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Direct Central Impact

- Period of deformation: $m_{A} v_{A}-\int P d t=m_{A} u$

$$
\leftrightarrow \xrightarrow{m_{A} U}+\overbrace{}^{\int_{\mathrm{R} d t}}=\overbrace{}^{m_{N_{V}}{ }^{\prime}}
$$

- Period of restitution: $m_{A} u-\int R d t=m_{A} v_{A}^{\prime}$
- A similar analysis of particle B yields
- Combining the relations leads to the desired second relation between the final velocities.
- Perfectly plastic impact, $e=0: v_{B}^{\prime}=v_{A}^{\prime}=v^{\prime}$
- Perfectly elastic impact, $e=1$:

Total energy and total momentum conserved.

$$
e=\text { coefficient of restitution }
$$

$$
=\frac{\int R d t}{\int P d t}=\frac{u-v_{A}^{\prime}}{v_{A}-u}
$$

$$
0 \leq e \leq 1
$$

$m_{A} v_{A}+m_{B} v_{B}=\left(m_{A}+m_{B}\right) v^{\prime}$

$$
e=\frac{v_{B}^{\prime}-u}{u-v_{B}}
$$

$$
v_{B}^{\prime}-v_{A}^{\prime}=e\left(v_{A}-v_{B}\right)
$$

$v_{B}^{\prime}-v_{A}^{\prime}=v_{A}-v_{B}$

Vector Mechanics for Engineers: Dynamics Problems Involving Energy and Momentum

- Three methods for the analysis of kinetics problems:
- Direct application of Newton's second law
- Method of work and energy
- Method of impulse and momentum
- Select the method best suited for the problem or part of a problem under consideration.

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.17

Vector Mechanics for Engineers: Dynamics

 Oblique Central Impact (freely moving particles)

- No tangential impulse component; $\quad\left(v_{A}\right)_{t}=\left(v_{A}^{\prime}\right)_{t} \quad\left(v_{B}\right)_{t}=\left(v_{B}^{\prime}\right)_{t}$ tangential component of momentum for each particle is conserved.
- Normal component of total

$$
m_{A}\left(v_{A}\right)_{n}+m_{B}\left(v_{B}\right)_{n}=m_{A}\left(v_{A}^{\prime}\right)_{n}+m_{B}\left(v_{B}^{\prime}\right)_{n}
$$ momentum of the two particles is conserved.

- Normal components of relative velocities before and after impact are related by the coefficient of restitution.

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.16

SOLUTION:

Ball B is hanging from an inextensible cord. An identical ball A is released from rest when it is just touching the cord and acquires a velocity v_{0} before striking ball B. Assuming perfectly elastic impact $(e=1)$ and no friction, determine the velocity of each ball immediately after impact.

- Determine orientation of impact line of action.
- The momentum component of ball A tangential to the contact plane is conserved.
- The total horizontal momentum of the two ball system is conserved.
- The relative velocities along the line of action before and after the impact are related by the coefficient of restitution.
- Solve the last two expressions for the velocity of ball A along the line of action and the velocity of ball B which is horizontal.

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.16

- The relative velocities along the line of action before and after the impact are related by the coefficient of restitution.

$$
\begin{aligned}
& \left(v_{B}^{\prime}\right)_{n}-\left(v_{A}^{\prime}\right)_{n}=e\left\lfloor\left(v_{A}\right)_{n}-\left(v_{B}\right)_{n}\right\rfloor \\
& v_{B}^{\prime} \sin 30^{\circ}-\left(v_{A}^{\prime}\right)_{n}=v_{0} \cos 30^{\circ}-0 \\
& 0.5 v_{B}^{\prime}-\left(v_{A}^{\prime}\right)_{n}=0.866 v_{0}
\end{aligned}
$$

- Solve the last two expressions for the velocity of ball A along the line of action and the velocity of ball B which is horizontal.

$$
\left(v_{A}^{\prime}\right)_{n}=-0.520 v_{0} \quad v_{B}^{\prime}=0.693 v_{0}
$$

$$
\begin{aligned}
& \vec{v}_{A}^{\prime}=0.5 v_{0} \vec{\lambda}_{t}-0.520 v_{0} \vec{\lambda}_{n} \\
& v_{A}^{\prime}=0.721 v_{0} \quad \beta=\tan ^{-1}\left(\frac{0.52}{0.5}\right)=46.1^{\circ} \\
& \alpha=46.1^{\circ}-30^{\circ}=16.1^{\circ} \\
& v_{B}^{\prime}=0.693 v_{0} \leftarrow
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics Oblique Central Impact

- Tangential momentum of ball is $\quad\left(v_{B}\right)_{t}=\left(v_{B}^{\prime}\right)_{t}$ conserved.
- Total horizontal momentum of block

$$
m_{A}\left(v_{A}\right)+m_{B}\left(v_{B}\right)_{X}=m_{A}\left(v_{A}^{\prime}\right)+m_{B}\left(v_{B}^{\prime}\right)_{X}
$$ and ball is conserved.

- Normal component of relative
$\left(v_{B}^{\prime}\right)_{n}-\left(v_{A}^{\prime}\right)_{n}=e\left\lfloor\left(v_{A}\right)_{n}-\left(v_{B}\right)_{n}\right\rfloor$ velocities of block and ball are related by coefficient of restitution.
- Note: Validity of last expression does not follow from previous relation for the coefficient of restitution. A similar but separate derivation is required.

Vector Mechanics for Engineers: Dynamics

Sample Problem 13.14(impact of a particle with a massive rigid body)

A ball is thrown against a frictionless, vertical wall. Immediately before the ball strikes the wall, its velocity has a magnitude v and forms angle of 30° with the horizontal. Knowing that $e=0.90$, determine the magnitude and direction of the velocity of the ball as it rebounds from the wall.

SOLUTION:

- Resolve ball velocity into components normal and tangential to wall.
- Impulse exerted by the wall is normal to the wall. Component of ball momentum tangential to wall is conserved.
- Assume that the wall has infinite mass so that wall velocity before and after impact is zero. Apply coefficient of restitution relation to find change in normal relative velocity between wall and ball, i.e., the normal ball velocity.

[^0]
Vector Mechanics for Engineers: Dynamics

while a_A > 0
a_BwA $=(1 /(\mathrm{Wb}+\mathrm{Wc})) *\left(\mathrm{~g}^{*}\left(\mathrm{Wc}-\mathrm{Wb} *\left(\mathrm{Mu}^{*} \cos (\mathrm{th})-\sin (\mathrm{th})\right)\right)+\mathrm{a}_{-} \mathrm{A}^{*}\left(\mathrm{~Wb} * \mathrm{Mu}^{*} \sin (\mathrm{th})+(\mathrm{Wc}+\mathrm{Wb}) * \cos (\mathrm{th})\right)\right) ;$ fprintf(' $\% 3.2 \mathrm{f} \quad \% 4.3 \mathrm{f} \quad \% 4.3 \mathrm{fln}$ ', Mu,a_A, $\mathrm{a}-\mathrm{BwA})$;
$\mathrm{Mu}=\mathrm{Mu}+0.01$;
$\mathrm{A}=\left(1-\mathrm{Mu} .{ }^{\wedge} 2\right) * \sin (\mathrm{th})-2 * \mathrm{Mu}{ }^{*} \cos (\mathrm{th})$;
$\mathrm{a}_{-} \mathrm{A}=\mathrm{g} *(\mathrm{~A} * \mathrm{~Wb} * \cos (\mathrm{th})-\mathrm{Wa} * \mathrm{Mu}) /(\mathrm{Wa}+\mathrm{Wb} * \mathrm{~A} * \sin (\mathrm{th})) ;$
end
\% Increase Mu to the next tenth
$\mathrm{Mu}=0.20$;
$\mathrm{a}_{-} \mathrm{BwA}=(\mathrm{g} /(\mathrm{Wb}+\mathrm{Wc})) *\left(\mathrm{Wc}-\mathrm{Wb}^{*}\left(\mathrm{Mu}{ }^{*} \cos (\mathrm{th})-\sin (\mathrm{th})\right)\right) ;$
\% print heading
fprintf("\n');
fprintf($\mathrm{Mu} \quad$ Accel. of B wrt $\left.\mathrm{A},\left(\mathrm{m} / \mathrm{s}^{\wedge} 2\right) \backslash \mathrm{n}^{\prime}\right)$;
while a_BwA >0
$\mathrm{a}_{-} \mathrm{BwA}=(\mathrm{g} /(\mathrm{Wb}+\mathrm{Wc}))^{*}\left(\mathrm{Wc}-\mathrm{Wb}^{*}(\mathrm{Mu} * \cos (\mathrm{th})-\sin (\mathrm{th}))\right)$;
if a_BwA >0
fprintf(' $\% 3.2 \mathrm{f} \quad \% 4.3 \mathrm{fln}{ }^{\prime}, \mathrm{Mu}, \mathrm{a} _$BwA) ; end
$\mathrm{Mu}=\mathrm{Mu}+0.10 ;$
end

end

[^0]: Vector Mechanics for Engineers: Dynamics
 \%\% Problem 12.C1 and Quiz 2
 clear all, clc, fprintf('\n\n\t Solution of Problem 12.C1 and Quiz 2 ')
 $\mathrm{g}=9.81$;
 for $m e 242=1: 2$
 if me242==1
 $\mathrm{Wa}=200 ; \%$ homework
 $\mathrm{Wb}=80$; \% homework
 $\mathrm{Wc}=18 ; \%$ homework
 fprintf('\n\n\t|t|t|t----Problem 12.C1----\n\n')
 elseif me242 $==2$
 $\mathrm{Wa}=22.5 * \mathrm{~g} ; \%$ quiz2
 $\mathrm{Wb}=9 * \mathrm{~g} ; \quad \%$ quiz2
 $\mathrm{Wc}=2 * \mathrm{~g} ; \%$ quiz2
 fprintf('|n\n\t|t|t|t----Quiz 2----\n\n')
 end
 $\mathrm{ma}=\mathrm{Wa} / \mathrm{g}$;
 $\mathrm{mb}=\mathrm{Wb} / \mathrm{g} ;$
 $\mathrm{mc}=\mathrm{Wc} / \mathrm{g} ;$
 $\mathrm{t}=30$;
 th $=\mathrm{t}^{*} \mathrm{pi} / 180$;
 $\mathrm{Mu}=0$;
 $\mathrm{A}=\left(1-\mathrm{Mu} .^{\wedge} 2\right)^{*} \sin (\mathrm{th})-2^{*} \mathrm{Mu}^{*} \cos (\mathrm{th})$;
 $\mathrm{a} _\mathrm{A}=\mathrm{g}^{*}\left(\mathrm{~A} * \mathrm{~Wb}^{*} \cos (\mathrm{th})-\mathrm{Wa} * \mathrm{Mu}\right) /\left(\mathrm{Wa}+\mathrm{Wb}^{*} \mathrm{~A}^{*} \sin (\mathrm{th})\right)$;
 \% print heading
 fprintf(' $\mathrm{Mu} \quad$ Accel. of A $\left(\mathrm{m} / \mathrm{s}^{\wedge} 2\right) \quad$ Accel. of B wrt A, $\left.\left(\mathrm{m} / \mathrm{s}^{\wedge} 2\right) \backslash \mathrm{n}^{\prime}\right)$;

