

Vector Mechanics for Engineers: Dynamics

Introduction

- Rigid Body Dynamics : distance between points is fixed, no size or shape changes, idealization of flexible body
- particle: mass concentrated at one point, center of mass, rotation of points w / r to c.m. is neglected
- rigid body: rotation of points w/r to c.m. is taken into account
- Example - Ski jumper :
- model as a particle: if interested in finding how far she jumps
- model as a rigid body: if interested in finding the position of the head w / r to torso
- Example - Football player kicking a ball :
- model as particles: if interested in finding how high/far the ball goes
- model as rigid bodies: if interested in finding the forces on the knee

Vector Mechanics for Engineers: Dynamics

 Introduction- Dynamics includes:
- Kinematics: study of the geometry of motion. Kinematics is used to relate displacement, velocity, acceleration, and time without reference to the cause of motion, i.e. forces are not considered.
- Kinetics: study of the relations existing between the forces acting on a body, the mass of the body, and the motion of the body. Kinetics is used to predict the motion caused by given forces or to determine the forces required to produce a given motion.
- Newton's laws:

1. $\mathrm{F}=0$
2. $\mathrm{F}=m \mathrm{a}$
3. Action-reaction

Vector Mechanics for Engineers: Dynamics Motion of a particle along a straight line

- The motion of a particle is known if position is known for all time t.
- If path is a straight line we have rectilinear motion, we can describe the motion in terms of a, v and x.
- Typically, conditions of motion are specified by the type of acceleration experienced by the particle. Determination of velocity and position requires two successive integrations.
- Three classes of motion may be defined for:
- acceleration given as a function of time, $a=f(t)$
- acceleration given as a function of position, $a=\mathrm{f}(x)$
- acceleration given as a function of velocity, $a=\mathrm{f}(v)$

Vector Mechanics for Engineers: Dynamics

Motion of a particle along a straight line

- Acceleration given as a function of time, $a=f(t)$:

$$
\begin{aligned}
& \frac{d v}{d t}=a=f(t) \quad d v=f(t) d t \quad \int_{v_{0}}^{v(t)} d v=\int_{0}^{t} f(t) d t \quad v(t)-v_{0}=\int_{0}^{t} f(t) d t \\
& \frac{d x}{d t}=v(t) \quad d x=v(t) d t \quad \int_{x_{0}}^{x(t)} d x=\int_{0}^{t} v(t) d t \quad x(t)-x_{0}=\int_{0}^{t} v(t) d t
\end{aligned}
$$

- Acceleration given as a function of position, $a=f(x)$:

$$
v=\frac{d x}{d t} \text { or } d t=\frac{d x}{v} \quad a=\frac{d v}{d t} \text { or } a=v \frac{d v}{d x}=f(x)
$$

$$
v d v=f(x) d x \quad \int_{v_{0}}^{v(x)} v d v=\int_{x_{0}}^{x} f(x) d x \quad \frac{1}{2} v(x)^{2}-\frac{1}{2} v_{0}^{2}=\int_{x_{0}}^{x} f(x) d x
$$

Vector Mechanics for Engineers: Dynamics

Motion of a particle along a straight line

- Acceleration given as a function of velocity, $a=f(v)$:
$\frac{d v}{d t}=a=f(v) \quad \frac{d v}{f(v)}=d t \quad \int_{v_{0}}^{v(t)} \frac{d v}{f(v)}=\int_{0}^{t} d t$
$\int_{v_{0}}^{v(t)} \frac{d v}{f(v)}=t$
$v \frac{d v}{d x}=a=f(v) \quad d x=\frac{v d v}{f(v)} \quad \int_{x_{0}}^{x(t)} d x=\int_{v_{0}}^{v(t)} \frac{v d v}{f(v)}$
$x(t)-x_{0}=\int_{v_{0}}^{v(t)} \frac{v d v}{f(v)}$

Vector Mechanics for Engineers: Dynamics

Uniform Rectilinear Motion

For particle in uniform rectilinear motion, the acceleration is zero and the velocity is constant.

$$
\begin{aligned}
& \frac{d x}{d t}=v=\text { constant } \\
& \int_{x_{0}}^{x} d x=v \int_{0}^{t} d t \\
& x-x_{0}=v t \\
& x=x_{0}+v t
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics Uniformly Accelerated Rectilinear Motion

For particle in uniformly accelerated rectilinear motion, the acceleration of the particle is constant.

$$
\begin{aligned}
& \frac{d v}{d t}=a=\text { constant } \quad \int_{v_{0}}^{v} d v=a \int_{0}^{t} d t \quad v-v_{0}=a t \\
& v=v_{0}+a t \\
& \frac{d x}{d t}=v_{0}+a t \quad \int_{x_{0}}^{x} d x=\int_{0}^{t}\left(v_{0}+a t\right) d t \quad x-x_{0}=v_{0} t+\frac{1}{2} a t^{2} \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
\end{aligned}
$$

$$
v \frac{d v}{d x}=a=\text { constant } \quad \int_{v_{0}}^{v} v d v=a \int_{x_{0}}^{x} d x \quad \frac{1}{2}\left(v^{2}-v_{0}^{2}\right)=a\left(x-x_{0}\right)
$$

$$
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
$$

Vector Mechanics for Engineers: Dynamics Graphical Solution of Rectilinear-Motion Problems

- Given the $x-t$ curve, the v - t curve is equal to the x - t curve slope.
- Given the $v-t$ curve, the $a-t$ curve is equal to the v - t curve slope.

Vector Mechanics for Engineers: Dynamics Graphical Solution of Rectilinear-Motion Problems

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.2

Ball tossed with $10 \mathrm{~m} / \mathrm{s}$ vertical velocity from window 20 m above ground.

Determine:

- velocity and elevation above ground at time t,
- highest elevation reached by ball and corresponding time, and
- time when ball will hit the ground and corresponding velocity.

SOLUTION:

- Integrate twice to find $v(t)$ and $y(t)$.
- Solve for t at which velocity equals zero (time for maximum elevation) and evaluate corresponding altitude.
- Solve for t at which altitude equals zero (time for ground impact) and evaluate corresponding velocity.

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.2

- Solve for t at which velocity equals zero and evaluate corresponding altitude.
$v(t)=10 \frac{\mathrm{~m}}{\mathrm{~s}}-\left(9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t=0$

$$
t=1.019 \mathrm{~s}
$$

- Solve for t at which altitude equals zero and evaluate corresponding velocity.

$$
\begin{aligned}
& y(t)=20 \mathrm{~m}+\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right) t-\left(4.905 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) t^{2} \\
& y=20 \mathrm{~m}+\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(1.019 \mathrm{~s})-\left(4.905 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)(1.019 \mathrm{~s})^{2} \\
& y=25.1 \mathrm{~m}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.3

Brake mechanism used to reduce gun recoil consists of piston attached to barrel moving in fixed cylinder filled with oil. As barrel recoils with initial velocity v_{0}, piston moves and oil is forced through orifices in piston, causing piston and cylinder to decelerate at rate proportional to their velocity.

Determine $v(t), x(t)$, and $v(x)$.

SOLUTION:

- Integrate $a=d v / d t=-k v$ to find $v(t)$.
- Integrate $v(t)=d x / d t$ to find $x(t)$.
- Integrate $a=v d v / d x=-k v$ to find $v(x)$.

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.3

- Integrate $a=v d v / d x=-k v$ to find $v(x)$.

$$
\begin{gathered}
a=v \frac{d v}{d x}=-k v \quad d v=-k d x \quad \int_{v_{0}}^{v} d v=-k \int_{0}^{x} d x \\
v-v_{0}=-k x \\
v=v_{0}-k x
\end{gathered}
$$

- Alternatively,

$$
\begin{aligned}
& \text { with } \quad x(t)=\frac{v_{0}}{k}\left(1-e^{-k t}\right) \\
& \text { and } \quad v(t)=v_{0} e^{-k t} \text { or } e^{-k t}=\frac{v(t)}{v_{0}} \\
& \text { then } \quad x(t)=\frac{v_{0}}{k}\left(1-\frac{v(t)}{v_{0}}\right)
\end{aligned}
$$

$$
v=v_{0}-k x
$$

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.5

Pulley D is attached to a collar which is pulled down at $3 \mathrm{in} . / \mathrm{s}$. At $t=0$, collar A starts moving down from K with constant acceleration and zero initial velocity. Knowing that velocity of collar A is $12 \mathrm{in} . / \mathrm{s}$ as it passes L, determine the change in elevation, velocity, and acceleration of block B when block A is at L.

SOLUTION:

- Define origin at upper horizontal surface with positive displacement downward.
- Collar A has uniformly accelerated rectilinear motion. Solve for acceleration and time t to reach L.
- Pulley D has uniform rectilinear motion. Calculate change of position at time t.
- Block B motion is dependent on motions of collar A and pulley D. Write motion relationship and solve for change of block B position at time t.
- Differentiate motion relation twice to develop equations for velocity and acceleration of block B.

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.7

Vector Mechanics for Engineers: Dynamics Tangential and Normal Components

Vector Mechanics for Engineers: Dynamics
 Sample Problem 11.10

A motorist is traveling on curved section of highway at 60 mph . The motorist applies brakes causing a constant deceleration rate.

Knowing that after 8 s the speed has been reduced to 45 mph , determine the acceleration of the automobile immediately after the brakes are applied.

SOLUTION:

- Calculate tangential and normal components of acceleration.
- Determine acceleration magnitude and direction with respect to tangent to curve.

Vector Mechanics for Engineers: Dynamics	
Radial and Transverse Components	
$\begin{aligned} & \vec{r}=r \vec{e}_{r} \\ & \frac{d \vec{e}_{r}}{d \theta}=\vec{e}_{\theta} \quad \frac{d \vec{e}_{\theta}}{d \theta}=-\vec{e}_{r} \\ & \frac{d \vec{e}_{r}}{d t}=\frac{d \vec{e}_{r}}{d \theta} \frac{d \theta}{d t}=\vec{e}_{\theta} \frac{d \theta}{d t} \\ & \frac{d \vec{e}_{\theta}}{d t}=\frac{d \vec{e}_{\theta}}{d \theta} \frac{d \theta}{d t}=-\vec{e}_{r} \frac{d \theta}{d t} \end{aligned}$	- When particle position is given in polar coordinates, it is convenient to express velocity and acceleration with components parallel and perpendicular to $O P$. - The particle velocity vector is $\begin{aligned} \vec{v} & =\frac{d}{d t}\left(r \vec{e}_{r}\right)=\frac{d r}{d t} \vec{e}_{r}+r \frac{d \vec{e}_{r}}{d t}=\frac{d r}{d t} \vec{e}_{r}+r \frac{d \theta}{d t} \vec{e}_{\theta} \\ & =\dot{r} \vec{e}_{r}+r \dot{\theta} \vec{e}_{\theta} \end{aligned}$ - Similarly, the particle acceleration vector is $\begin{aligned} \vec{a} & =\frac{d}{d t}\left(\frac{d r}{d t} \vec{e}_{r}+r \frac{d \theta}{d t} \vec{e}_{\theta}\right) \\ & =\frac{d^{2} r}{d t^{2}} \vec{e}_{r}+\frac{d r}{d t} \frac{d \vec{e}_{r}}{d t}+\frac{d r}{d t} \frac{d \theta}{d t} \vec{e}_{\theta}+r \frac{d^{2} \theta}{d t^{2}} \vec{e}_{\theta}+r \frac{d \theta}{d t} \frac{d \vec{e}_{\theta}}{d t} \\ & =\left(\ddot{r}-r \dot{\theta}^{2}\right) \vec{e}_{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \vec{e}_{\theta} \end{aligned}$

Vector Mechanics for Engineers: Dynamics Radial and Transverse Components

- When particle position is given in cylindrical coordinates, it is convenient to express the velocity and acceleration vectors using the unit vectors $\vec{e}_{R}, \vec{e}_{\theta}$, and \vec{k}.
- Position vector,

$$
\vec{r}=R \vec{e}_{R}+z \vec{k}
$$

- Velocity vector,

$$
\vec{v}=\frac{d \vec{r}}{d t}=\dot{R} \vec{e}_{R}+R \dot{\theta} \vec{e}_{\theta}+\dot{z} \vec{k}
$$

- Acceleration vector,

$$
\vec{a}=\frac{d \vec{v}}{d t}=\left(\ddot{R}-R \dot{\theta}^{2}\right) \vec{e}_{R}+(R \ddot{\theta}+2 \dot{R} \dot{\theta}) \vec{e}_{\theta}+\ddot{z} \vec{k}
$$

Vector Mechanics for Engineers: Dynamics
 Sample Problem 11.12

Rotation of the arm about O is defined by $\theta=0.15 t^{2}$ where θ is in radians and t in seconds. Collar B slides along the arm such that $r=0.9-0.12 t^{2}$ where r is in meters.

After the arm has rotated through 30°, determine (a) the total velocity of the collar, (b) the total acceleration of the collar, and (c) the relative acceleration of the collar with respect to the arm.

SOLUTION:

- Evaluate time t for $\theta=30^{\circ}$.
- Evaluate radial and angular positions, and first and second derivatives at time t.
- Calculate velocity and acceleration in cylindrical coordinates.
- Evaluate acceleration with respect to arm.

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.12

SOLUTION:

- Evaluate time t for $\theta=30^{\circ}$.

$$
\begin{aligned}
\theta & =0.15 t^{2} \\
& =30^{\circ}=0.524 \mathrm{rad} \quad t=1.869 \mathrm{~s}
\end{aligned}
$$

- Evaluate radial and angular positions, and first and second derivatives at time t.

$$
\begin{aligned}
& r=0.9-0.12 t^{2}=0.481 \mathrm{~m} \\
& \dot{r}=-0.24 t=-0.449 \mathrm{~m} / \mathrm{s} \\
& \ddot{r}=-0.24 \mathrm{~m} / \mathrm{s}^{2} \\
& \theta=0.15 t^{2}=0.524 \mathrm{rad} \\
& \dot{\theta}=0.30 t=0.561 \mathrm{rad} / \mathrm{s} \\
& \ddot{\theta}=0.30 \mathrm{rad} / \mathrm{s}^{2}
\end{aligned}
$$

Vector Mechanics for Engineers: Dynamics Sample Problem 11.12

- Evaluate acceleration with respect to arm.
Motion of collar with respect to arm is rectilinear and defined by coordinate r.

$$
a_{B / O A}=\ddot{r}=-0.240 \mathrm{~m} / \mathrm{s}^{2}
$$

Vector Mechanics for Engineers: Dynamics Motion Relative to a Frame in Translation

- Designate one frame as the fixed frame of reference. All other frames not rigidly attached to the fixed reference frame are moving frames of reference.
- Position vectors for particles A and B with respect to the fixed frame of reference $O x y z$ are \vec{r}_{A} and \vec{r}_{B}.
- Vector $\vec{r}_{B / A}$ joining A and B defines the position of B with respect to the moving frame $A x^{\prime} y^{\prime} z^{\prime}$ and $\vec{r}_{B}=\vec{r}_{A}+\vec{r}_{B / A}$
- Differentiating twice,
$\vec{v}_{B}=\vec{v}_{A}+\vec{v}_{B / A} \quad \vec{v}_{B / A}=$ velocity of B relative to A.
$\vec{a}_{B}=\vec{a}_{A}+\vec{a}_{B / A} \quad \vec{a}_{B / A}=$ acceleration of B relative to A.
- Absolute motion of B can be obtained by combining motion of A with relative motion of B with respect to moving reference frame attached to A.

Vector Mechanics for Engineers: Dynamics Motion of Several Particles: Relative Motion

- For particles moving along the same line, time should be recorded from the same starting instant and displacements should be measured from the same origin in the same direction.
$x_{B / A}=x_{B}-x_{A}=$ relative position of B
$x_{B}=x_{A}+x_{B / A}$ with respect to A
$v_{B / A}=v_{B}-v_{A}=$ relative velocity of B with respect to A
$v_{B}=v_{A}+v_{B / A}$
$a_{B / A}=a_{B}-a_{A}=$ relative acceleration of B with respect to A
$a_{B}=a_{A}+a_{B / A}$

Vector Mechanics for Engineers: Dynamics

Sample Problem 11.4

Ball thrown vertically from 12 m level in elevator shaft with initial velocity of $18 \mathrm{~m} / \mathrm{s}$. At same instant, open-platform elevator passes 5 m level moving upward at $2 \mathrm{~m} / \mathrm{s}$.

Determine (a) when and where ball hits elevator and (b) relative velocity of ball and elevator at contact.

SOLUTION:

- Substitute initial position and velocity and constant acceleration of ball into general equations for uniformly accelerated rectilinear motion.
- Substitute initial position and constant velocity of elevator into equation for uniform rectilinear motion.
- Write equation for relative position of ball with respect to elevator and solve for zero relative position, i.e., impact.
- Substitute impact time into equation for position of elevator and relative velocity of ball with respect to elevator.

Vector Mechanics for Engineers: Dynamics
Sample Problem 11.4

- Write equation for relative position of ball with respect to elevator and solve for zero relative position, i.e., impact.

- Substitute impact time into equations for position of elevator and relative velocity of ball with respect to elevator.

$$
\begin{array}{rlrl}
y_{E} & =5+2(3.65) & \\
v_{B / E} & =(18-9.81 t)-2 & & y_{E}=12.3 \mathrm{~m} \\
& =16-9.81(3.65) & & \\
& & v_{B / E}=-19.81 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{array}
$$

