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Abstract

We consider a monopoly which practices nonlinear pricing, where buyers may have inequity-averse

preferences. Each buyer has a valuation for the good, drawn from a distribution. Monopoly knows the

distribution but not the realizations. We introduce the possibility that any buyer can be inequity-averse

(fair types) or not (neutral types). Fair types get a disutility from inequity and this is captured through

a utility function in the spirit of the one introduced by Fehr and Schmidt (1999). We characterize the

optimal nonlinear pricing and show that the degree of suboptimality increases, and the monopoly profit

goes down, as the degree of the inequity aversion increases. We also show that some or all of the neutral

types with low demand are strictly better off, when there are inequity-averse types in the environment.
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1 Introduction

Pricing strategies of a monopoly facing different demand groups have been widely studied. Depending on

how much a monopoly can tell different buyers apart in terms of their values of willingness to pay, the

monopoly can adopt different degrees of price discrimination. When the monopoly knows that there are

different groups of buyers with different demand structures, but is unable to tell which buyer is in which

group, the monopoly can practice second degree price discrimination. This could be done through two-part

tariffs, which involve a fixed fee and a unit price, or more generally through a nonlinear pricing scheme.

There is a large number of real-life examples where the firms are engaging in price discrimination practices

even when they do not directly observe which demand group a particular buyer belongs to. For instance,

different memberships for gyms or clubs (some with a higher fee and better facility access, some with lower

fee and limited facility access), bulk discounts (in form of dropping average price as quantity purchased goes

up, for instance, in electricity consumption), tying and bundling (conditioning the sale of one good on the

purchase of the other good from the same seller, for instance, tying printers and cartridges) and different

pricing by airline companies (in form of different prices for the same flight that vary with the timing of the

purchase or with the buyer’s location at the time of purchase). The purpose of these practices is to get

different buyers to buy the good at prices closer to their own individual willingness to pay values. If the firm

manages to come with such a pricing, it receives a higher profit.

When a monopoly applies nonlinear pricing, it offers a set of pairs of total quantity and total payment,

and lets each buyer choose whichever pair she wants. The pairs are determined so that each pair is targeted

at a specific demand group, and the buyers in that demand group find it optimal to get the pair, which is

targeted at them.1 In a simple setting with two types, what happens is that the monopoly leaves no surplus

to the low demand type buyers, and leaves positive surplus to the high demand type buyers, as information

rents. Moreover, the low demand type ends up consuming a quantity that is socially suboptimal, more

precisely, the marginal benefit from its consumption is higher than its marginal cost.2

When there are different types of agents in an asymmetric information environment where the firm cannot

tell which buyer is of which type, these different types of buyers are likely to end up with heterogeneous

allocations with possibly different average prices, which may yield to different information rents. For instance,

a low demand type may end up with no information rent (zero net surplus), whereas a high demand type

may receive a positive information rent (positive net surplus), and that may make the low demand type
1See Goldman, Leland, and Sibley (1984), Maskin and Riley (1984) and Oren, Smith, and Wilson (1984) for relatively early

studies which have focused on this problem.
2Tirole (1988) has depicted these main findings.
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(and/or the high demand type) unhappy because of the inequity in terms of different net surpluses. Thus,

it is plausible to be concerned about buyers’ preferences for fairness or their potential aversion to inequity

which may result from the differences in these information rents each buyer gets. It is, therefore, important

to consider inequity-averse buyers, and to analyze the effects of such aversion on the incentive scheme the

monopoly designs. Milgrom and Roberts (1992) pointed out that when providing incentives, preferences

that take into account others’ well-being do matter: “A given level of pay may be viewed as good or bad,

acceptable or unacceptable, depending on the compensation of others in the reference group, and as such may

result in different behavior.” Also, Boyle (2000) indicated that the consumer reaction to price discrimination

usually has a sense of unfairness: “...people often react to differential pricing for the same good with a sense

of unfairness. No matter how many times they are lectured by the economists that it is actually to the

benefit of all that producers be able to charge different prices to groups with different ability and willingness

to pay, the popular reaction is normally ‘that’s not fair’.”

There has been some influential studies, both theoretical and experimental, that explore preferences for

fairness and inequity aversion. Prasnikar and Roth (1992) provided experimental results that point towards

fairness concerns in various game experiments, and Rabin (1993) studied the notion of fairness from a game

theoretical perspective. In their seminal paper, Fehr and Schmidt (1999) studied inequity-averse preferences

and have provided a simple model of inequity aversion together with a utility form that represents preferences

for fairness. In this paper, we incorporate fairness concerns into a model of a nonlinear pricing monopoly,

adopting a version of the utility form provided in Fehr and Schmidt (1999) to account for inequity aversion.

We consider inequity aversion in the sense that if a buyer receives a net surplus which is different from the

net surpluses of other buyers, then this buyer may get disutility from those differences.

We consider both discrete and continuum types environment where a monopoly is using a nonlinear

pricing scheme facing different types of buyers: different both in terms of their valuations for the good and

also in terms of whether they have preferences for fairness or not. The monopoly knows that there are these

different types but cannot tell which buyer is in which group. We first solve for the optimal nonlinear pricing

assuming all types are served, and show that the degree of suboptimality strictly increases as the degree of

inequity aversion increases. This follows from the extra distortion inequity aversion creates, which increases

the net surplus of the low demand type, and consequently, more incentives are needed to be provided for the

high demand type. This is provided through a smaller quantity for the low demand type in order to make

that bundle less attractive for the high demand type. This lower quantity increases the difference between

the marginal benefit and the marginal cost of the quantity targeted at the low demand type. Second, we

show that, in the discrete case, the inequity-neutral type with a lower demand is strictly better off, and, in
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the continuum case, a positive mass of low demand inequity-neutral types are strictly better off, when there

are inequity-averse types relative to the case when there are no inequity-averse types in the environment.

The intuition behind this result is that leaving zero net surplus for the neutral low demand type is not

compatible with the participation constraint of the inequity-averse low demand type, forcing the monopoly

to leave positive net surplus for the neutral low demand type. We also show that the monopoly profit

decreases as the degree of inequity aversion increases in both discrete and continuum cases. This is due to

the distortion generated by inequity aversion, which makes it more costly to provide incentives to different

type of buyers to self select. We also analyze various extensions and discuss some issues, including the case

when the monopoly is allowed to exclude some of the buyers from the market by not selling to them, an

alternative individual rationality condition, and also an alternative evaluation of the disutility from inequity.

The scope of this paper falls into the intersection of the literature on nonlinear pricing and the literature

on inequity aversion. Nonlinear pricing literature can be thought of two strands, one on monopoly pricing

and the other on oligopolistic competition. Since our focus is on the monopoly pricing, we will discuss the

former one.3 Varian (1989) provides an extensive discussion of the different types of price discrimination,

including nonlinear pricing, and their applications. When a monopoly is considered, the optimal nonlinear

pricing involves marginal cost pricing for the last unit, and higher marginal prices for all lower quantities

(Mussa and Rosen, 1978).4 As we discussed above, the monopoly leaves some information rent for the

high demand type and no surplus for the low demand type, and the quantity for the low demand type is

socially suboptimal (Tirole, 1988).5 Varian (1985) explores the welfare implications of a third degree price

discrimination and shows that the effect is positive only if the market output increases. Hendel, Lizzeri,

and Roketskiy (2014) develop a model of nonlinear pricing of storable goods and show that storability

restricts monopolist’s ability to extract surplus. In terms of behavioral aspects, such as biased beliefs, time-

inconsistency, ambiguity aversion and loss aversion, and their implications in the nonlinear pricing context,

there is a growing number of studies. When consumers have biased prior beliefs regarding their future

preferences, the optimal nonlinear pricing of a monopoly contains a risky offer as well as a safe offer that

guarantees the consumer her reservation value in each state (Eliaz and Spiegler, 2008). In an optimal set

of two-part tariffs problem of a firm which is facing time-inconsistent partially naive agents, an investment
3For the literature on nonlinear pricing with oligopolistic competition, see Stole (2007) for an extensive chapter on competition

and price discrimination in the Handbook of Industrial Organization 3. Also, see Armstrong (2016) for an extensive survey
and analysis on nonlinear pricing and bundling for multi-seller case (as well as the single-seller case), and for both discrete and
continuum types of buyers.

4When buyer entry is introduced, through learning own preference type after incurring privately known entry costs, the
optimal nonlinear pricing contract changes significantly: distortion, exclusion and bunching are reduced (Ye and Zhang, 2017).

5See Maskin and Riley (1984) and Wilson (1996) for a mechanism design approach for a monopoly’s nonlinear pricing
problem.
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good (immediate cost) is priced below its marginal cost, whereas a leisure good (immediate benefit) is priced

over its marginal cost (DellaVigna and Malmendier, 2004). When buyers are loss-averse, there may be larger

downward distortions resulting from screening and efficiency gains relative to the second best pricing without

loss aversion (Carbajal and Ely, 2016). Similarly, with loss-averse buyers, a monopoly finds it optimal to

offer the same bundle (full pooling menu) if the likelihood of low demand buyer is sufficiently large and

the loss aversion is in an intermediate range (Hahn, Kim, Kim, and Lee, 2016). When the monopoly has

information ambiguity, the optimal nonlinear pricing involves bunching at the bottom, and the distortion is

reduced (Zheng, Wang, and Li, 2015). Our findings under inequity aversion resemble some of these findings:

we also obtain pooling at the bottom for the discrete case, where the inequity-averse and inequity-neutral low

demand type buyers receive the same bundle, and also pooling (across neutral and fair types) in continuum

type case.

Regarding the inequity-averse preferences, in their seminal paper, Fehr and Schmidt (1999) provide a

simple representation of other-regarding preferences, and they solve the following puzzle: when players are

given the opportunity to punish free riders, stable cooperation is maintained, although punishment is costly

for those who punish. If some people care about equity, the puzzle is solved. Since their study, a large number

of both theoretical and empirical studies emerged on other-regarding preferences, including inequity aversion

and its implications.6 In the contracting context, there is experimental evidence that shows that when

fairness concerns are present, principals prefer less complete contracts over more complete ones, although

the standard self-interest model predicts otherwise (Fehr and Schmidt, 2000). In a moral hazard setting,

there is experimental evidence showing that bonus contracts are chosen over incentive contracts implying

that principals may have fairness concerns (Fehr, Klein, and Schmidt, 2007).7 In a principal-agent setup

where the agent has inequity aversion, the optimal contract involves linear sharing rules (Englmaier and

Wambach, 2010). Experimental evidence shows that there are efficiency gains through an increase in the

set of enforceable actions, when both sides in the market have reciprocity (Fehr, Gächter, and Kirchsteiger,

1997). There is also experimental evidence for buyers setting prices sufficiently above the market clearing

price when there are fairness concerns, and sellers responding with high quality levels (Fehr, Kirchsteiger,

and Riedl, 1993).8 In a related study, Englmaier, Gratz, and Reisinger (2012), consider third degree price

discrimination when consumers have reciprocity, and show that the difference in prices is smaller relative
6Also see Fehr and Schmidt (2006) for empirical foundations and theoretical approaches of other-regarding preferences.
7However, trust contracts are not chosen as much as incentive contracts implying the agents are not necessarily inequity-

averse.
8For a theoretical study on reciprocity that takes both consequences and underlying intentions into account, see Falk and

Fischbacher (2006). Also see Dufwenberg and Kirchsteiger (2004) for an existence result for sequential reciprocity equilibrium,
for dynamic games with reciprocity.
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to the case with no reciprocity. Our study is similar to theirs in the sense that we both analyze the affect

of inequity aversion on the price discrimination, however, we focus on second degree price discrimination

whereas they focus on third degree price discrimination. Also, the way fairness enters the buyer’s utility

is different: they follow the reciprocity model provided by Falk and Fischbacher (2006), and we adopt the

inequity aversion model provided by Fehr and Schmidt (1999). In our model, for a buyer inequity aversion

results from the differences between her own surplus and other buyers’ surpluses, whereas in their model a

buyer reciprocates toward the seller, because of inequity between her and another buyer.

Given the volume of experimental studies that provide evidence for fairness concerns of agents and

inequity-averse preferences, it is important to analyze implications of inequity aversion in various economic

models and environments. In nonlinear pricing literature, the buyers are assumed to have only self-regarding

preferences and no fairness concerns. In the light of the experimental evidence that suggests otherwise, it

becomes crucial to adjust existing theoretical models to incorporate such preferences. This paper contributes

to the literature in this sense, by studying the implications of inequity aversion in the context of monopoly’s

nonlinear pricing, where buyers may get disutility when their net surplus resulting from the nonlinear pricing

adopted by the monopoly differs from the net surpluses of other buyers.9

We depict the model in Section 2. We consider a discrete type space and solve the optimal nonlinear

pricing in Section 3. In Section 4, we solve the model with continuum set of types and characterize the

optimal nonliner pricing and its efficiency properties. In Section 5, we provide an analysis for the case where

it is allowed to exclude some buyers, and also discuss a few other issues. Section 6 concludes.

2 Model

There is a monopoly who produces and sells a single product at a constant marginal cost c > 0 to a set of

buyers. The monopoly engages in nonlinear pricing by offering a set of quantity-total payment bundles. The

monopoly faces a total demand, which consists of different types of buyers and monopoly cannot tell which

buyer is which. The buyers differ from one another in two aspects. (1) Each buyer has a demand parameter

θ, which is distributed over the set Θ with a distribution function f(θ). (2) Each buyer is either fair (has a

utility function that depends on personal consumption as well as consumption of others) with probability γ

or neutral (utility function only depends on personal consumption) with probability (1− γ). Thus, the type
9We restrict attention to case where disutility is received only when other’s net surplus is higher than own net surplus. The

scope of our study is limited to this kind of other-regarding preferences. We do not focus on other types of other-regarding
preferences such as the preferences that represent trust, reciprocity, altruism, and spitefulness. For instance, the preferences
depicted by Bolton and Ockenfels (2000), where each agent compares own payoff to the average payoff in a reference group,
and those depicted by Levine (1998) who studies altruistic and spiteful preferences are beyond the scope of this study. Also see
McCabe, Rigdon, and Smith (2003) who provide an experimental analysis regarding trust and reciprocity.
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space is given by Θ×{f, n}, where f denotes a fair type and n denotes a neutral type. The type of the buyer

is private information, that is, only buyer knows her type (θ, t), where θ ∈ Θ and t ∈ {f, n}. The utility

function of a neutral buyer with θ has the form V (q, θ) = θu(q) − T (q), where q is the quantity consumed,

u(·) is a strictly concave and increasing function and T (·) is the payment for the quantity q, made by the

buyer to the monopoly. The type space and the distribution function are common knowledge.

The fair buyers have a special case of Fehr and Schmidt (1999) type utility functions. A fair type with θ

receives the following net utility.

W (q, θ) = V (q, θ)−α
[
γ

∫
Θ

max{0, V (qf (θ̂), θ̂)−V (q, θ)}f(θ̂)dθ̂+(1−γ)

∫
Θ

max{0, V (qn(θ̂), θ̂)−V (q, θ)}f(θ̂)dθ̂
]

where α > 0 is the parameter that captures fairness of the buyer, and qf (θ̂) is the quantity level of a fair

type with demand parameter θ̂, and qn(θ̂) is the quantity level of a neutral type with demand parameter θ̂.10

The larger the α, the larger the fairness concern of a fair type. When a fair type buyer’s benefit from

consumption net of payment is less than the benefit from consumption net of payment of other buyers, her

net utility decreases.11 Note that a buyer of type θ̂ evaluates the utility of the other types, V (q(θ), θ), in

order to calculate the disutility she gets from inequity. This is feasible since she knows the type space and the

distribution function, and from the nonlinear pricing offered she can calculate which quantity-total payment

bundle is targeted at which type.12 The reason for this type of inequity which stems from the differences in

net utilities may be the following. Although buyers’ demand parameters are different, still the monopoly’s

set of offers determines the final utility levels, for instance, it is up to monopoly to extract the entire surplus
10We abuse notation by writingW (q, θ), asW depends on the entire menu of bundles which determine other buyers’ surpluses.
11This version of fairness is one-sided, in the sense that an inequity-averse buyer cares about only when her payoff is less

than other buyers’ payoffs, and she does not care about the case where her payoff is larger than other buyers’ payoff. Fehr and
Schmidt (1999) provide a two sided fairness concern, where the agent cares about both types of inequities. With two sided
fairness we would have

W (q, θ) = V (q, θ)− α
[
γ

∫
Θ

max{0, V (qf (θ̂), θ̂)− V (q, θ)}f(θ̂)dθ̂

+(1− γ)

∫
Θ

max{0, V (qn(θ̂), θ̂)− V (q, θ)}f(θ̂)dθ̂
]

−β
[
γ

∫
Θ

max{0, V (q, θ)− V (qf (θ̂), θ̂)}f(θ̂)dθ̂

+(1− γ)

∫
Θ

max{0, V (q, θ)− V (qn(θ̂), θ̂)}f(θ̂)dθ̂
]

where α captures fairness concern when the buyer receives less relative to others, and β captures fairness concern when the
buyer receives more relative to others, where α ≥ β. In this paper, we assume α > β = 0 and focus on fairness concern stemming
from when one receives less from others. When β > 0 is allowed, we believe that the distortion we get in our setting, with
α > β = 0, would be even more salient. The monopoly would be forced to provide a more balanced set of utilities, relative to
the case we study below. Thus, we believe that our results will not change qualitatively if we include a positive β, and it may
not be worth including this type of aversion, as it makes the analysis even more cumbersome.

12Alternatively, we can think of type θ̂ calculating the utility she would get from the other types’ bundles, that is, V (q(θ), θ̂)
and then calculate the disutility from possible inequities, looking at the difference V (q(θ̂), θ̂) − V (q(θ), θ̂). We discuss this
alternative way of calculating the disutility from inequity, in Section 5.3.
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of the low type. After all, the monopoly does not constrain itself by making sure that all or some types end

up with the same net utility. Thus, we think that it is plausible to consider buyers who can feel aversion

to ending up with a lower surplus level than others, even if they know that others have different demand

parameters.

The monopoly offers a set of bundles, {(qi, Ti)}i∈Θ×{f,n}. Each (qi, Ti) is targeted at the corresponding

type i. Monopoly solves the following profit maximizing problem to find the optimal nonlinear pricing, that

is, optimal {(qi, Ti)}i∈Θ×{f,n}, where we use {qf (θ), Tf (θ), qn(θ), Tn(θ)}, instead of {(qi, Ti)}i∈Θ×{f,n}, to ease

notation

max{qt(θ),Tt(θ)}θ∈Θ,t∈{f,n}

∫
Θ

[γ[Tf (θ)− cqf (θ)] + (1− γ)[Tn(θ)− cqn(θ)]]f(θ)dθ

subject to individual rationality and incentive compatibility constraints of each type.13 First, we analyze the

case where there is a discrete set of types in Section 3 below, with the smallest possible type space. The

purpose of Section 3 is to see the implications of fairness in the simplest possible setting. Then, we consider

the continuum set of types in Section 4, where we generalize the insights from Section 3.

3 Discrete Types

There are two demand types, low demand types, in λ proportion, and high demand types, in 1−λ proportion.

From a bundle, (q, T ), low demand types receive a net benefit of θ1u(q)− T and high demand types receive

a net benefit of θ2u(q)−T , where θ2 > θ1 > 0, and u(·) is a strictly increasing and strictly concave function,

that is, u′ > 0 and u′′ < 0.

A low demand type buyer has fairness concerns with γ probability and has no fairness concerns with

1 − γ probability. Thus, we have effectively three types of buyers: λγ proportion is low demand type with

fairness concerns (low type fair buyers), λ(1 − γ) proportion is low demand type with no fairness concern

(neutral low type buyers), and (1−λ) proportion is high demand type with no fairness concern (neutral high

type buyers or simply high type buyers).14

A low-demand buyer, who is a fair type, receives a net benefit from bundle (q, T ), which is given by

W (q, T ) = V − α[λγmax{Vf − V, 0}+ (1− γ)λmax{V1 − V, 0}+ (1− λ) max{V2 − V, 0}]

where V = θ1u(q)−T , Vf = θ1u(qf )−Tf , V1 = θ1u(q1)−T1 and V2 = θ2u(q2)−T2. Here, α > 0 summarizes

the degree of fairness concern: the larger α, the larger the disutility from inequity a buyer receives.
13These constraints will be given in detail in Sections 3.1 and 4.1 below for two different type spaces.
14Here we consider a simpler version of the main model given in Section 2 by allowing only two types of demand and only

one of them being possibly a fair type. In Section 4, where we study the case of continuum types, we allow for each demand
type to be possibly fair.
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3.1 Optimal nonlinear pricing

The monopoly offers three bundles, (qf , Tf ), (q1, T1) and (q2, T2), targeted at low type fair buyers, neutral

low type buyers and high type buyers, respectively, and then solves the following profit maximizing problem

to find the optimal nonlinear pricing, {(qi, Ti)}i=f,1,2

max{(qi,Ti)}i=f,1,2λγ[Tf − cqf ] + λ(1− γ)[T1 − cq1] + (1− λ)[T2 − cq2]

subject to individual rationality and incentive compatibility constraints of each type.

Through the incentive compatibility constraints monopoly makes sure that each type chooses the bundle

targeted at her. Then, a neutral high type buyer gets the bundle (q2, T2) and receives a net utility V2, and a

neutral low type buyer gets the bundle (q1, T1) and receives a net utility V1. A fair low type buyer gets the

bundle (qf , Tf ) and her net utility is

W (q, T ) = Vf − α[(1− γ)λmax{V1 − Vf , 0}+ (1− λ) max{V2 − Vf , 0}]

Assuming outside options are zero15, individual rationality for a low type fair buyer, if she gets the bundle

targeted at her is given by

Vf − α[(1− γ)λmax{V1 − Vf , 0}+ (1− λ) max{V2 − Vf , 0}] ≥ 0 (IRf )

where Vf = θ1u(qf ) − Tf and Vi = θiu(qi) − Ti for i = 1, 2. The individual rationality constraints for the

other two (neutral) types are simply V1 ≥ 0 (IR1) and V2 ≥ 0 (IR2).

The incentive compatibility constraints for a low type fair buyer are as follows.

Vf − α[(1− γ)λmax{V1 − Vf , 0}+ (1− λ) max{V2 − Vf , 0}]

≥ V1 − α[(1− γ)λmax{V1 − V1, 0}+ (1− λ) max{V2 − V1, 0}] (ICf,1)

and

Vf − α[(1− γ)λmax{V1 − Vf , 0}+ (1− λ) max{V2 − Vf , 0}]

≥ V 2
1 − α[(1− γ)λmax{V1 − V 2

1 , 0}+ (1− λ) max{V2 − V 2
1 , 0}] (ICf,2)

where V 2
1 = θ1u(q2) − T2 is the net benefit low type would get if she gets the bundle targeted at the high

15We discuss nonzero outside option case, especially the one that would arise from the disutility from inequity when not
buying any amount, in Section 5.2 for the continuum type space.
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type. The incentive compatibility constraints for the neutral low type are V1 ≥ V 2
1 (IC1,2) and V1 ≥ Vf

(IC1,f ). The incentive compatibility constraints for the high type are V2 ≥ V 1
2 (IC2,1) and V2 ≥ V f

2 (IC2,f ),

where V 1
2 = θ2u(q1)−T1 is the net benefit high type would get if she gets the bundle targeted at the neutral

low type buyer, and V f
2 = θ2u(qf )−Tf is the net benefit high type would get if she gets the bundle targeted

at the low type fair buyer.

Assumption 1 θ1 > (1− λ
1+α(1−λ))θ2.

Assumption 1 makes sure that serving all types is optimal. Under Assumption 1, we prove the following

result concerning the efficiency of the optimal nonlinear pricing the monopoly uses.

Proposition 1 Under Assumption 1, the profit maximizing {(q∗i , T ∗i )}i=f,1,2 is given by

θ1u
′(q∗1) = θ1u

′(q∗f ) = c′ > c.

θ2u
′(q∗2) = c

T ∗1 = T ∗f =
θ1 −Kθ2

1−K
u(q∗1)

T ∗2 = θ2(u(q∗2)− u(q∗1)) + T ∗1

where K = α(1−λ)
1+α(1−λ) ∈ (0, 1) and c′ = λ(1−K)θ1

λ(1−K)θ2−(θ2−θ1)c. Moreover, q∗2 > q∗1 = q∗f and T ∗2 > T ∗1 = T ∗f . The

low type fair buyers get zero surplus, while neutral low type buyers and high type buyers get positive surplus.16

Proof. See Appendix 7.1.

In the standard model, high type receives some information rent and monopoly makes sure that high

type does not deviate to low type’s bundle, and the low type is left with zero surplus. When there is inequity

aversion, however, there is an extra distortion in terms of participation constraint of the fair low type buyer,

since she gets additional disutility when other buyers receive a higher utility from the bundle they receive.

Thus, the monopoly has some incentives to provide a relatively more balanced set of utilities, and at the

same time it still needs to provide incentives for each type not to deviate, especially for the high type. This

tradeoff distorts the bundle for the low type and also the payment of the high type. Choosing three different

bundles is too costly due to inequity aversion, thus the monopoly chooses to give the fair and neutral low

types the same bundle, but a different bundle for the high type. This makes the neutral low type strictly

better off relative to the case with no inequity aversion. This is because the existence of fair low type buyers

forces the monopoly to leave some information rents to the neutral low type as well, in the sense that the

neutral low type is not the “worst type” anymore. Now, monopoly is also forced to change the total payment

of the high type to induce her not to deviate. However, there are two forces affecting her payment, an upward
16Note that when α = 0 (thus, K = 0), we have θ1u

′(q∗1) = λθ1
λθ2−(θ2−θ1)

c, which is equivalent to the condition in the standard
case: θ1u

′(q∗1) = c

1− 1−λ
λ

θ2−θ1
θ1

. See Tirole (1988), page 154 for this condition. Also, note that Assumption 1 implies λθ2 > θ2−θ1,

which makes sure the denominator is positive and all types are served when there is no inequity aversion.
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pressure from the lower quantity of the low type and an downward pressure from the lower payment of the

low type. This tradeoff depends on the model parameters and the degree of the concavity of the utility

function u(·). We provide a resolution to this tension in Corollary 2 below, where we show that the high

type is adversely affected from inequity aversion of the fair low type, under some mild conditions.

Next, we provide a result that shows how suboptimality is affected by the degree of inequity aversion.

Before we provide this result below in Proposition 2, we first explain what we mean by suboptimality in this

context. In the nonlinear pricing context, a quantity level is socially optimal if its social marginal benefit is

equal to its social marginal cost, otherwise it is socially suboptimal. For a neutral type i, if ∂V∂qi = θiu
′(qi) = kc

with k > 0, then qi is socially optimal if k = 1 and suboptimal if k 6= 1. For a fair type buyer, we need to

take into account her disutility from other buyers’ higher surpluses as well. The net utility of a fair type

buyer is summarized by W instead of V . Thus, if ∂W
∂qf

= kc with k > 0, then qf is socially optimal if k = 1

and suboptimal if k 6= 1. Finally, we define |k − 1| to be the degree of suboptimality, that is, the distance

between k and the socially optimal case, which is k = 1.

Proposition 2 The degree of suboptimality increases as the degree of inequity aversion, α, increases.

Proof. We know by Proposition 1, the quantity for the high type is already socially optimal, as its social

marginal benefit equals to the marginal cost: θ2u
′(q∗2) = c.17 Proposition 1 also shows that the suboptimality

involved in the quantity for the neutral low type, q∗1, is summarized in the difference between c and c′, where

c′ > c with c′ = kc, that is, k > 1. Note that k = λ(1−K)θ1
λ(1−K)θ2−(θ2−θ1) , where K = α(1−λ)

1+α(1−λ) ∈ (0, 1). We need

to show that k increases as α increases.

dk

dα
=

d

dK
[

λ(1−K)θ1c

λ(1−K)θ2 − (θ2 − θ1)
]
dK

dα

= λθ1c
d

dK
[

1−K
λ(1−K)θ2 − (θ2 − θ1)

]
(1− λ)(1 + α(1− λ))− (1− λ)α(1− λ)

(1 + α(1− λ))2

= λθ1c
−λθ2(1−K) + (θ2 − θ1) + λθ2(1−K)

(λ(1−K)θ2 − (θ2 − θ1))2

1− λ
(1 + α(1− λ))2

= λθ1c
θ2 − θ1

(λ(1−K)θ2 − (θ2 − θ1))2

1− λ
(1 + α(1− λ))2

> 0

since 0 < λ < 1, θ2 > θ1 > 0 and c > 0. Thus, as α increases, the suboptimality of q1 also increases.

Now, we turn to the suboptimality involved in, q∗f , the quantity for the fair low type buyer. Since the

bundles for the fair low type and neutral low type buyers are the same, we have Vf = V1. This implies that

W = Vf − α(1 − λ)(V2 − Vf ) = [1 + α(1 − λ)]Vf − α(1 − λ)V2. For the fair low type, the marginal benefit
17We already take into account the extra social cost that arises in the form of disutility fair type gets when measuring the

suboptimality involved in the quantity for the fair type.
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of q∗f is then given by ∂W
∂qf

= [1 + α(1− λ)]θ1u
′(q∗f ). From Proposition 1, we know θ1u

′(q∗f ) = kc. Thus, the

marginal benefit of q∗f is given by [1+α(1−λ)]kc. We just showed that k increases in α. Clearly, 1+α(1−λ)

also increases in α. Thus, as α increases, [1 +α(1− λ)]k also increases, hence the suboptimality increases.18

Overall, since both suboptimalities are increasing in α, the result follows.

The optimal quantity level for the high type buyer (q∗2) is socially optimal, that is, marginal utility of

consumption is the same as it’s marginal cost. However, the quantity level for the low type fair buyer (q∗f )

and the one for the neutral low type buyer (q∗1) are socially suboptimal. This is parallel to the standard case,

where each type is neutral and the low type gets the quantity level which is socially suboptimal. However,

in the standard case, it also happens that the type of buyer who gets a socially suboptimal quantity level is

left with zero surplus, which is not the case in the current model: The neutral low type buyer gets a socially

suboptimal quantity level, yet she ends up with some positive surplus since her individual rationality holds

with strict inequality.

Proposition 2 implies that the stronger the fairness concern, the larger the social inefficiency of the

optimal nonlinear pricing.19 The reason for this result is that when there is inequity aversion, there is extra

distortion on the quantity and payment bundles offered. The neutral low type receives a positive surplus, in

terms of some information rent as she is not the “worst type” now. This increase in surplus for the neutral

low type causes her indifference curve shift right (on a payment-quantity space), and thus it puts an extra

pressure on the incentives to be provided for the high type. For the high type not to deviate the quantity

for the low type must decrease, which further increases the social suboptimality.

Now, we look at the effect of the existence of inequity-averse buyers on the neutral buyers.

Corollary 1 Under inequity aversion, neutral low type buyer receives a higher net surplus and a bundle with

lower quantity and lower total payment, relative to the case with no inequity aversion.

Proof. The net surplus of the neutral low type is zero in the case with no inequity aversion, yet Proposition 1

shows that this type of buyer ends up with a positive net surplus when there is inequity aversion. Again,

from Proposition 1, we know that θ1u
′(q∗1) = λ(1−K)θ1

λ(1−K)θ2−(θ2−θ1)c. In the case with no inequity aversion, that

is, α = 0, we have θ1u
′(q1) = λθ1

λθ2−(θ2−θ1)c (since K = 0). Since, λ(1−K)θ1
λ(1−K)θ2−(θ2−θ1) >

λθ1
λθ2−(θ2−θ1) , we have

θ1u
′(q∗1) > θ1u

′(q1), where q1 is the optimal quantity for the low type in the case with no inequity aversion.

Since u′(·) is decreasing due to concavity, we immediately get q∗1 < q1. We also know that T ∗1 = θ1−Kθ2
1−K u(q∗1)

under inequity aversion. In the case with no inequity aversion, T1 = θ1u(q1). It is easy to see θ1−Kθ2
1−K < θ1

using θ2 > θ1. Also, u(q∗1) < u(q1) since q∗1 < q1. Thus, T ∗1 < T1.
18Note that [1 + α(1− λ)]k > 1.
19We will show a parallel and more general result in the continuum case with no exclusion possibility, in Section 4.1.
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The reason behind Corollary 1 is the following. We know that the distortion on the quantity for the low

demand buyer is larger, through a smaller quantity. Also the neutral low type ends up with positive surplus

when there are inequity-averse buyers, whereas she receives zero net surplus when there are no inequity-averse

buyers. Thus, the total payment for this buyer should also be smaller, relative to the bundle she would get

when there is no inequity-averse buyers. The comparison for the high type buyer is less straight forward,

and we provide a comparison using CARA or CRRA utility functions.

Corollary 2 Assume θ2− θ1 > λ(θ2− c). For a CARA utility function in the form of u(q) = 1− e−q or for

a CRRA utility function in the form of u(q) = log(q + 1), under inequity aversion, high type buyer receives

a lower net surplus, relative to the case with no inequity aversion.

Proof. When there is inequity aversion, the high type buyer receives θ2u(q∗2)−T ∗2 , and she receives θ2u(q2)−

T2 when there is no inequity aversion, where (q2, T2) is the optimal bundle for the high type in the case

with no inequity aversion. Since θ2u(q∗2) = c and θ2u(q2) = c in both cases, it suffices to show that

T ∗2 > T2. We know that T ∗2 = θ2(u(q∗2) − u(q∗1)) + T ∗1 and T2 = θ2(u(q2) − u(q1)) + T1. Thus, we need

θ2(u(q∗2)− u(q∗1)) + T ∗1 > θ2(u(q2)− u(q1)) + T1, where T ∗1 = θ1−Kθ2
1−K u(q∗1) and T1 = θ1u(q1). Inserting these

and arranging, we get that T ∗2 > T2 is equivalent to (θ2 − θ1)u(q1) > (θ2 − φ)u(q∗1), where φ = θ1−Kθ2
1−K .

Note that θ2 − φ = θ2−θ1
1−K . Thus, all we need to show is (1 − K)u(q1) > u(q∗1), where K = α(1−λ)

1+α(1−λ) , and

1 − K = 1
1+α(1−λ) . Thus, we need to show that u(q1) > (1 + α(1 − λ))u(q∗1). Let α(1 − λ) = z, to ease

notation, that is we will show u(q1) > (1 + z)u(q∗1). Now, we know that u′(q∗1) = λ(1−K)
λ(1−K)θ2−(θ2−θ1)c from

Proposition 1. Arranging this, we have u′(q∗1) = λ
λθ2−(θ2−θ1)(1+z)c. We also know u′(q1) = λ

λθ2−(θ2−θ1)c.

With CARA utility in the form of u(q) = 1− e−q, we have u(q) = 1− u′(q). Thus, we need to show

1− λc

λθ2 − (θ2 − θ1)
> (1 + z)(1− λc

λθ2 − (θ2 − θ1)(1 + z)
)

Arranging this inequality, we get λ2θ2(θ2 − c) < (θ2 − θ1)[λθ2(1 + z) + λθ2 − (θ2 − θ1)(1 + z)]. Note that

λθ2− (θ2− θ1)(1 + z) > 0 by Assumption 1, and also z = α(1− λ) > 0. Thus, if λ2θ2(θ2 − c) < (θ2 − θ1)λθ2

then we are done. This inequality is satisfied by our assumption, θ2 − θ1 > λ(θ2 − c).

With CRRA utility in the form of u(q) = log(q + 1), we have u′(q) = 1/(q + 1). Thus, we need to show

log(λθ2 − (θ2 − θ1))− log(λc) > (1 + z)[log(λθ2 − (θ2 − θ1)(1 + z))− log(λc)]
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which is equivalent to zlog(λc) > (1 + z)log(λθ2 − (θ2 − θ1)(1 + z))− log(λθ2 − (θ2 − θ1)). We have

zlog(λc) > zlog(λθ2 − (θ2 − θ1))

= (1 + z)log(λθ2 − (θ2 − θ1))− log(λθ2 − (θ2 − θ1))

> (1 + z)log(λθ2 − (θ2 − θ1)(1 + z))− log(λθ2 − (θ2 − θ1))

The first inequality is by our assumption (θ2 − θ1 > λ(θ2 − c)) and the second inequality is because λθ2 −

(θ2 − θ1)(1 + z) < λθ2 − (θ2 − θ1).

Corollary 2 shows that the high type buyer ends up with a higher total payment, relative to the case

with no inequity aversion. This is because the quantities are distorted further for the low type buyers

and monopoly leaves extra surplus to the neutral low type buyer. To compensate the monopoly extracts

more from the high type (in terms of higher total payment, as the quantity for the high type does not

change), which at the same time, reduces the surplus difference between these two types, hence weakening

the distortion.

Proposition 3 Monopoly profit decreases as the degree of inequity aversion, α, increases.

Proof. By Proposition 1, we know that the optimal bundles for the fair low type and the neutral low type

are the same. Thus, the profit of the monopoly is given by

Πineq = λγ[T ∗f − cq∗f ] + λ(1− γ)[T ∗1 − cq∗1] + (1− λ)[T ∗2 − cq∗2] = λ[T ∗1 − cq∗1] + (1− λ)[T ∗2 − cq∗2]

Using the optimal payments from Proposition 1 and arranging Πineq, we get

Πineq = θ1−K(α)θ2
1−K(α) u(q∗1) + (1− λ)θ2[u(q∗2)− u(q∗1)]− [λcq∗1 + (1− λ)cq∗2]

By Envelope theorem, we have
d Πineq
dα = d

dK ( θ1−Kθ21−K ) dK(α)
dα u(q∗1), where d

dK ( θ1−Kθ21−K ) = −θ2(1−K)+θ1−Kθ2
(1−K)2 = θ1−θ2

(1−K)2 < 0 and dK(α)
dα > 0.20

Thus, we get d Πineq
dα < 0, which establishes our result.

The fact that monopoly’s profit decreases as inequity aversion is stronger is quite intuitive. Since, now

with inequity aversion, there is an extra distortion which makes providing incentives through all different

bundles more costly, thus, monopoly achieves a lower profit level.

An interesting feature of the optimal nonlinear pricing is that the quantities and the payments depend

on α parameter (through K = α(1−λ)
1+α(1−λ)), but they do not depend on γ, the fraction of the fair types. The

reason is that once the monopoly is restricted to serve all types of buyers, which is ensured by Assumption 1,

the quantity levels and the payment levels turn out to be the same for the low type fair buyers and neutral
20We already know dK(α)

dα
> 0 from the proof of Proposition 2.
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low type buyers, as it is too costly to offer three different bundles, and it is easier to match the bundles for

the low types. But then, the proportion of fair buyers does not affect the monopoly’s overall profit level.

Another implication of the fact that the optimal nonlinear pricing does not depend on the fraction of the

fair types, γ, is as follows. Regardless of the fraction of the fair types, in the optimal nonlinear pricing, the

bundles targeted at both the neutral low type and the fair low type are the same and independent of γ. This

implies that if γ = 1, that is if all low types are fair, at the optimal nonlinear pricing, the fair types would

get the same bundle as they did when γ is much smaller. Thus, when a very small fraction for fair types is

introduced, the optimal nonlinear pricing is as if all low types are inequity-averse.

4 Continuum of Types

In this section, we assume that the demand type θ is distributed over an interval [θ, θ̄] according to the

cumulative distribution function F (·) with a full support where the associated density function is f(·). Each

buyer is either a fair type with probability γ or a neutral type with probability 1− γ, regardless of her taste

parameter. Thus, the type space is {[θ, θ̄]} × {f, n}.

As in Section 2, the utility function of a neutral buyer with θ has the form V (q, θ) = θu(q)− T (q) and a

fair type with θ receives the following net utility.

W (q, θ) = V (q, θ)−α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)−V (q, θ)}f(θ̂)dθ̂+(1−γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)−V (q, θ)}f(θ̂)dθ̂

]

4.1 Optimal Nonlinear Pricing

We consider the case where the monopoly serves to every type.21 With no exclusion, the monopoly solves

the following problem.

max{qt(θ),Tt(θ)}θ∈[θ,θ̄],t∈{f,n}

∫ θ̄

θ
[γ[Tf (θ)− cqf (θ)] + (1− γ)[Tn(θ)− cqn(θ)]]f(θ)dθ

subject to individual rationality and incentive compatibility constraints of each type. We begin with describing

the individual rationality and the incentive compatibility constraints.

Individual Rationality: Each type of buyer should be at least as well off by choosing the bundle

targeted at her as her outside option. Assuming outside options are zero, individual rationality constraints
21We also provide an analysis, in Section 5.1, for the case where the monopoly is allowed to choose whom to serve and whom

not to, that is, where exclusion is possible. Solving that extension is technically cumbersome, however, we show that even if
the monopoly is allowed to exclude some types, it is optimal not to exclude any types, thus the optimal nonlinear pricing turns
out to be the one we provide here in this section.

15



for neutral and fair types are:

IRn(θ) : θu(qn(θ))− T (q(θ)) ≥ 0

IRf (θ) : V (qf (θ), θ)− α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

]
≥ 0

Incentive Compatibility: Each type of buyer should be at least as well off by choosing the bundle

targeted at her as choosing another bundle. A neutral buyer should not mimic other neutral types, ICn,n,

as well as other fair types, ICn,f .

ICn,n(θ) : θu(qn(θ))− T (qn(θ)) ≥ θu(qn(θ′))− T (qn(θ′))

and

ICn,f (θ) : θu(qn(θ))− T (qn(θ)) ≥ θu(qf (θ′))− T (qf (θ′))

for all θ ∈ [θ, θ̄]. A fair buyer should not mimic other fair types, ICf,f , as well as other neutral types, ICf,n.

ICf,n(θ) : V (qf (θ), θ)− α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

]

≥ V (qn(θ′), θ)− α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)− V (qn(θ′), θ)}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)− V (qn(θ′), θ)}f(θ̂)dθ̂

]
and

ICf,f (θ) : V (qf (θ), θ)− α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

]

≥ V (qf (θ′), θ)− α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)− V (qf (θ′), θ)}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)− V (qf (θ′), θ)}f(θ̂)dθ̂

]
for all θ ∈ [θ, θ̄]. Thus, we have four different sets of incentive compatibility constraints.
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Assumption 2 V (q, θ) is strictly concave in q.22

Lemma 1 Under Assumption 2, the monopoly’s problem reduces to

max{qf (θ),T (qf (θ))}θ∈[θ,θ̄]

∫ θ̄

θ
[T (qf (θ))− cqf (θ)]f(θ)dθ

subject to IRf (θ) : V (qf (θ), θ)− α[
∫ θ̄
θ (V (qf (θ̂), θ̂)− V (qf (θ), θ))f(θ̂)dθ̂] = 0, and

ICn,n(θ) : θu′(qf (θ))− T ′(qf (θ)) = 0 for all θ.

Proof. This is proven through a series of lemmas in Appendix 7.2.

Before we characterize the quantities in the optimal nonlinear pricing when exclusion is not possible, we

make two assumptions.

Assumption 3 Hazard rate of F increases with θ, that is, f(θ)
1−F (θ) is increasing in θ.

Assumption 3 is fairly reasonable and common. It is satisfied by a number of distributions, including

the normal, the uniform, the logistic and the exponential and any distribution with nondecreasing density

function.

Assumption 4 θf(θ)
1−F (θ) > 1 + α.

Assumption 4 is the counterpart of Assumption 1 in the discrete case. Note that Assumption 3 and 4 together

imply θf(θ)
1−F (θ) > 1 + α for all θ, which in turn implies θ − (1 + α)H(θ) > 0 for any θ, where H(θ) = 1−F (θ)

f(θ) .

Proposition 4 In the optimal nonlinear pricing when exclusion is not allowed, the quantities are q∗n(θ) =

q∗f (θ) = q∗(θ), where q∗(θ) solves u′(q(θ))[θ −H(θ)− αH(θ)] = c, for every θ.

Proof. First, we have q∗n(θ) = q∗f (θ) = q∗(θ) from Lemma 23 in Appendix 7.2. From the envelope theorem

and ICn,n(θ), we have ∂V
∂θ = V ′(θ) = u(q(θ)). By integrating it, we get:

V (q(θ), θ) =

∫ θ

θ
u(q(θ̂))dθ̂ + V (q(θ), θ)

We also have W (θ) = 0 since IRf (θ) is binding. Then, we have

V (q(θ), θ) = α[

∫ θ̄

θ
(V (q(θ̂), θ̂)−V (q(θ), θ)f(θ̂)dθ̂] = α[

∫ θ̄

θ

(∫ θ̂

θ
u(q(t))dt

)
f(θ̂)dθ̂] = α[

∫ θ̄

θ
u(q(θ))(1−F (θ))dθ]

22We verify that this assumption actually holds under the optimal payment scheme T (q), right after the proof of Corollary 3
below.
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Since qn(θ) = qf (θ), we have T (qf (θ)) = T (qn(θ)). Using T (q(θ)) = θu(q(θ)) − V (θ), the profit of the

monopoly becomes

Π =

∫ θ̄

θ

(
θu(q(θ))−

∫ θ

θ
u(q(θ̂))dθ̂ − α[

∫ θ̄

θ
u(q(θ))(1− F (θ))dθ]− cq(θ)

)
f(θ)dθ

Integrating by parts, we get

∫ θ̄

θ

(∫ θ

θ
u(q(θ̂))d(θ̂)

)
f(θ)dθ =

∫ θ̄

θ
u(q(θ))(1− F (θ))dθ

∫ θ̄

θ

(∫ θ̄

θ
u(q(θ))(1− F (θ))dθ

)
f(θ)dθ =

∫ θ̄

θ
u(q(θ))(1− F (θ))dθ

Hence, the profit becomes

Π =

∫ θ̄

θ

(
θu(q(θ))− u(q(θ))

(1− F (θ))

f(θ)
− αu(q(θ))

(1− F (θ))

f(θ)
− cq(θ)

)
f(θ)dθ

Inserting H(θ) = 1−F (θ)
f(θ) , we maximize the integral pointwise. The first order condition with respect to q at

a fixed θ gives θu′(q(θ))− u′(q(θ))H(θ)− αu′(q(θ))H(θ)− c = 0. Rearranging, we get

u′(q(θ))[θ − (1 + α)H(θ)] = c (1)

which characterizes the quantity function in the optimal nonlinear pricing.23

The above result says that there is pooling, that is, neutral and fair types of the same demand parameter

receives the same quantity. The intuition is similar to the one in the discrete case. Because of the inequity

aversion of the fair type, it is costlier to give right incentives for each buyer to self select, by offering

different bundles. A direct corollary to Proposition 4 is that the larger the fairness concern, the larger the

suboptimality involved in the optimal nonlinear pricing, which implies that the quantity offered decreases.

Corollary 3 As α increases, the degree of suboptimality increases and the quantity offered q∗(θ) decreases

for any θ.

Proof. Consider the suboptimality involved in the quantities for the neutral types. By Equation 1 we have

θu′(q∗(θ)) = c θ
θ−(1+α)H(θ) > c. For any θ, the fraction θ

θ−(1+α)H(θ) is positive by Assumption 3 and 4 and

increasing as α increases. Thus, the right hand side also increases, which means a higher suboptimality.
23Note that when α = 0, Equation 1 is equivalent to the one in the standard model. See equation (3.14) on page 156, in

Tirole (1988). Also, note that Assumption 3 and 4 makes sure that θ − (1 + α)H(θ) > 0, which is needed since u′(q) > 0.
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Now consider the suboptimality involved in the quantities for the fair types. Since, qn(θ) = qf (θ) = q(θ) by

Proposition 4, and since V (q(θ), θ) is increasing in θ by Lemma 14, we have

W = V (q, θ)− α
[
γ

∫ θ̄

θ
[V (q(θ̂), θ̂)− V (q, θ)]f(θ̂)dθ̂ + (1− γ)

∫ θ̄

θ
[V (q(θ̂), θ̂)− V (q, θ)]f(θ̂)dθ̂

]
= V (q, θ)− α

[
γ

∫ θ̄

θ
V (q(θ̂), θ̂)f(θ̂)dθ̂ − γ[θ̄ − θ]V (q, θ) + (1− γ)

∫ θ̄

θ
V (q(θ̂), θ̂)f(θ̂)dθ̂ − (1− γ)[θ̄ − θ]V (q, θ)

]
= (1 + α[θ̄ − θ])V (q, θ)− α

∫ θ̄

θ
V (q(θ̂), θ̂)f(θ̂)dθ̂

The marginal benefit for a fair type buyer with θ is then given by

∂W

∂qf
= (1 + α[θ̄ − θ]) ∂V

∂qf
= (1 + α[θ̄ − θ])θu′(q∗(θ)) = (1 + α[θ̄ − θ]) θ

θ − (1 + α)H(θ)
c = kc

Since both (1 + α[θ̄ − θ]) and θ
θ−(1+α)H(θ) are increasing in α, we conclude that the suboptimality, |k − 1|,

increases in α. Finally, since θu′(q∗(θ)) is larger when α is larger, we immediately get a smaller q∗(θ) for any

θ since u is strictly concave.

Note that the above result is also valid at α = 0. Thus, the suboptimality is larger when there is inequity

aversion relative to the case where there is no inequity aversion.

Verification of Assumption 2: We verify that V (q, θ) = θu(q) − T (q) is strictly concave in q under the

optimal payment scheme T (q). To see this, take two quantity functions, q(·) and q(·) and a real number

δ ∈ (0, 1). For any given θ, from the proof of Proposition 4, we have

V (δq(θ) + (1− δ)q(θ), θ) =

∫ θ

θ
u(δq(θ̂) + (1− δ)q(θ̂))dθ̂ + α

∫ θ̄

θ
u(δq(θ̂) + (1− δ)q(θ̂))(1− F (θ̂))dθ̂

>

∫ θ

θ
[δu(q(θ̂)) + (1− δ)u(q(θ̂))]dθ̂ + α

∫ θ̄

θ
[δu(q(θ̂)) + (1− δ)u(q(θ̂))](1− F (θ̂))dθ̂

= δ
[ ∫ θ

θ
u(q(θ̂))dθ̂ + α

∫ θ̄

θ
u(q(θ̂))(1− F (θ̂))dθ̂

]
+ (1− δ)

[ ∫ θ

θ
u(q(θ̂))dθ̂ + α

∫ θ̄

θ
u(q(θ̂))(1− F (θ̂))dθ̂

]
= δV (q(θ), θ) + (1− δ)V (q(θ), θ)

which establishes that V (q, θ) is strictly concave in q.

Proposition 5 There exists a θ̃ ∈ (θ, θ̄], such that for all θ < θ̃, neutral types are strictly better off when

there are fair types relative to when there are none.

Proof. From the proof of Proposition 4, we have V (q∗(θ), θ) = α[
∫ θ̄
θ u(q∗(θ))(1−F (θ))dθ] > 0.24 Note that

24This can also be seen by IRf (θ) and Lemma 22, where we have W (q∗(θ), θ) = V (q∗(θ), θ) − α
∫ θ̄
θ

[V (q∗(θ̂), θ̂) −
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when α = 0, V (q(θ), θ) = 0 by IRn(θ), where q(·) is the optimal quantity function in this standard case.

Thus, we have V (q∗(θ), θ) > V (q(θ), θ). By Lemma 14, V (q∗, θ) is strictly increasing in θ. In the standard

case, V (q, θ) also strictly increases in θ. Regardless of which one increases faster, since both are strictly

increasing and since V (q∗(θ), θ) > 0 = V (q(θ), θ), there always exists a θ̃ ∈ (θ, θ̄], such that for all θ < θ̃,

V (q∗, θ) > V (q, θ).25

The above proposition is the counterpart of the result in the discrete case that shows that the neutral low

demand type buyer is better off. The intuition is that the existence of fair type buyers forces the monopoly

to leave more positive information rent to those types that have low enough demand parameters, through

pooling of bundles in order to decrease the disutility the fair types get.

Proposition 6 Monopoly profit decreases as the degree of inequity aversion, α, increases.

Proof. The final form of profit is

Π =

∫ θ̄

θ

(
u(q(θ))[θ − (1 + α)H(θ)]− cq(θ)

)
f(θ)dθ

We show that u(q(θ))[θ − (1 + α)H(θ)]− cq(θ) is decreasing in α, for any given θ. Note that for a given θ,

q(θ) is decreasing in α. By Equation 1, we have c = u′(q(θ))[θ − (1 + α)H(θ)], which implies

u(q(θ))[θ − (1 + α)H(θ)]− cq(θ) = u(q(θ))[θ − (1 + α)H(θ)]− q(θ)u′(q(θ))[θ − (1 + α)H(θ)]

= [θ − (1 + α)H(θ)][u(q(θ))− q(θ)u′(q(θ))]

The expression in the first brackets decreases in α. Let’s check the expression in the second brackets.
∂[u(q)−qu′(q)]

∂q = u′(q) − u′(q) − qu′′(q) = −qu′′(q) ≥ 0 since u′′ < 0. Thus, this expression is increasing

in q. We know that as α increases q(θ) decreases. Thus, this expression is also decreasing in α. Thus,

u(q(θ))[θ−(1+α)H(θ)]−cq(θ) is decreasing in α, proving our result. Alternatively, note that the maximized

profit of the monopoly (from the proof of Proposition 4) is given by

Πineq =

∫ θ̄

θ

(
θu(q∗(θ))− u(q∗(θ))H(θ)− αu(q∗(θ))H(θ)− cq∗(θ)

)
f(θ)dθ

By Envelope theorem, the overall effect of α on the profit is dΠ
dα , which is negative, proving our result.

V (q∗(θ), θ)]f(θ̂)dθ̂ = 0. Note that α
∫ θ̄
θ

[V (q∗(θ̂), θ̂) − V (q∗(θ), θ)]f(θ̂)dθ̂ > 0. This is implied by Lemma 14. Thus, we have
V (q∗(θ), θ) > 0.

25For instance, if V (q∗, θ) increases faster than V (q, θ), then θ̃ = θ̄, and every neutral type is strictly better off when there
are fair types in the environment, relative to the one with no fair types. Otherwise, θ̃ may be an intermediate threshold, that
is, θ̃ ∈ (θ, θ̄), and for any neutral type with θ < θ̃, it is better to have fair types in the environment.
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The above result generalizes Proposition 3 to the continuum type case through a similar intuition. Also,

as we discussed at the end of Section 3, γ does not affect the optimal nonlinear pricing, when exclusion is

not allowed. Note that γ is not present in Equation 1. This is because, when the monopoly has to serve all

types, then the quantities turn out to be the same for a fair and neutral types with the same taste parameter

θ. Then, the probability γ disappears from the monopoly’s objective function.

5 Discussion and Extensions

In this section, we discuss a number of extensions and some issues, including the optimal nonlinear pricing

when the monopoly is allowed to exclude consumers, an alternative participation constraint, the way disutility

from inequity is evaluated and an interpretation regarding information structure.

5.1 Optimal nonlinear pricing with exclusion

Suppose the monopoly is allowed to exclude some of the types. Assume that the monopoly sells to the

neutral types with taste parameter θ ∈ [θ̃n, θ] and to the fair types with taste parameter θ ∈ [θ̃f , θ], where

θ̃n and θ̃f are chosen by the monopoly.

We show that exclusion is not optimal under individual rationality and incentive compatibility constraints.

Therefore, pricing in Section 4.1 is the optimal nonlinear pricing for the monopoly, even if exclusion is allowed.

We first show that if the monopoly excludes some of the neutral types and some of the fair types, it must

exclude the same set of demand types of fair and neutral types, that is, θ̃f = θ̃n. The idea is that if, for a

given demand type θ, exactly one of the fair and neutral types is excluded and the other is included, then

the excluded type will mimic the other included type. Then, we show that one of the excluded neutral types

would mimic the smallest demand type who is not excluded, to get a positive payoff, as the lowest fair type

gets a positive benefit V (q, θ̃f ) (that compensates the disutility from inequity to yield W (q, θ̃f ) = 0). Thus,

there is no incentive feasible nonlinear pricing when a positive mass of types are excluded. This leads to our

conclusion of no exclusion being optimal. The analysis and the proofs are in Appendix 7.3.

5.2 An alternative individual rationality constraint

In our model, for a fair type buyer, we have considered an individual rationality constraint in which the

outside option is normalized to zero. Thus, when a fair type buyer does not accept any of the offers, then

she ends up with zero net payoff, and there is no additional disutility from other buyers having some positive

consumption level. However, when a fair type buyer decides not to accept any of the offers, she may do so
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by taking into account that when she consumes none, she will end up with the disutility she may get due

to her fairness concern, given that at least some other buyer ends up with some positive consumption level.

Thus, an alternative IR constraint for fair type buyers may be formalized as follows.

IRf (θ) : V (qf (θ), θ)− α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

]
≥

−α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)}f(θ̂)dθ̂ + (1− γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)}f(θ̂)dθ̂

]
where the right hand side of the inequality reflects the fair type buyer’s net payoff which consists of only the

disutility she gets from the case in which she does not buy at all.

Lemma 22 in Appendix 7.2 implies that V (qn(θ), θ) = V (qf (θ), θ) for all θ, which does not use any

individual rationality constraint. Thus, it is independent of this alternative version of individual rationality.

Using this together with Lemma 14, we have V (qn(θ̂), θ̂) = V (qf (θ̂), θ̂) > V (qf (θ), θ) for all θ̂ > θ. Then,

arranging the inequality above, we get

IRf (θ) : V (qf (θ), θ)−α
[
γ

∫ θ̄

θ
[V (qf (θ̂), θ̂)−V (qf (θ), θ)]f(θ̂)dθ̂+(1−γ)

∫ θ̄

θ
[V (qf (θ̂), θ̂)−V (qf (θ), θ)]f(θ̂)dθ̂

]

≥ −α
[
γ

∫ θ̄

θ
V (qf (θ̂), θ̂)f(θ̂)dθ̂ + (1− γ)

∫ θ̄

θ
V (qf (θ̂), θ̂)f(θ̂)dθ̂

]
which implies

IRf (θ) : [1 + α(θ − θ)]V (qf (θ), θ)− α
∫ θ̄

θ
V (qf (θ̂), θ̂)f(θ̂)dθ̂ + α

∫ θ̄

θ
V (qf (θ̂), θ̂)f(θ̂)dθ̂ ≥ 0 (2)

The IR constraint we employed in our model for a fair type with θ with zero outside option was as follows.

V (qf (θ), θ)− α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)− V (qf (θ), θ)}f(θ̂)dθ̂

]
≥ 0

Again using V (qn(θ̂), θ̂) = V (qf (θ̂), θ̂) > V (qf (θ), θ) for all θ̂ > θ, and arranging we get,

V (qf (θ), θ)− α
[
γ

∫ θ̄

θ
[V (qf (θ̂), θ̂)− V (qf (θ), θ)]f(θ̂)dθ̂ + (1− γ)

∫ θ̄

θ
[V (qf (θ̂), θ̂)− V (qf (θ), θ)]f(θ̂)dθ̂

]
≥ 0
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which can be rewritten as

[1 + α(θ − θ)]V (qf (θ), θ)− α
∫ θ̄

θ
[V (qf (θ̂), θ̂)]f(θ̂)dθ̂ ≥ 0 (3)

Thus, the alternative IR constraint for θ-type (inequality 2) has an extra term on its left hand side, relative

to the IR constraint we used for the same type (inequality 3): α
∫ θ̄
θ V (qf (θ̂), θ̂)f(θ̂)dθ̂. The existence of this

extra term makes sense, since in the alternative version there is more room for disutility from inequity, thus

the net benefit for the buyer to participate must be higher. Hence, there is this extra term on the left hand

side. Also note that, this term emerges from the disutility from other buyers’ benefit levels relative to not

consuming at all, thus it depends only on other types’ benefits, and it does not depend on θ.

However, with this alternative formulation our results do not qualitatively change. The intuition is that

this extra term (independent of type θ) increases the level of inequity aversion for every fair type by the

same amount, while not affecting the incentive compatibilities except, ICn,f (θ), the one that makes sure

the neutral type does not mimic the fair type. Since this extra term produces an extra distortion through

the individual rationality condition and forces the monopoly to offer a better bundle for the fair type, it

makes it harder to provide incentives for the neutral type. There will be further inefficiency, which creates

larger suboptimality. Note that this term increases as α increases, thus, our result that says the degree of

suboptimality increases as the degree of inequity aversion increases is still valid, now with a stronger effect.

Also, the existence of this extra term translates into even smaller profit for the monopoly as well, since

the information rent left to the higher types will be larger. When α is larger, this negative effect of this

extra term on monopoly’s profit is also larger. Finally, regarding the neutral types who are better off with

the existence of fair types, these neutral types will be better off even more when this alternative individual

constraint is considered, since now a better bundle will be targeted at fair types, and since there is pooling

across the fair and neutral types of the same demand type, the corresponding neutral type will benefit from

the existence of fair types even more.

5.3 Evaluating the disutility from inequity

When calculating a θ̂ type’s disutility from possible inequities, we assumed that this type can calculate

the utility of every other type, V (q(θ), θ). This is feasible since she can technically learn which bundle is

for which type by looking at the nonlinear pricing and she also knows the type space and the distribution

function. Then, she compares V (q(θ), θ) with her utility V (q(θ̂), θ̂). However, an alternative way of thinking

about how to calculate the disutility from possible inequities, is to let type θ̂ buyer calculate the utility she
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would get from the bundle of other types, V (q(θ), θ̂), and then look at the difference V (q(θ̂), θ̂)− V (q(θ), θ̂).

With this type of evaluation, the problem is that whenever V (q(θ̂), θ̂)− V (q(θ), θ̂) < 0, that is, when a fair

type with θ̂ suffers from inequity, she would deviate to get the θ type’s bundle, which not only gives her a

higher utility, but also decreases her disutility from possible inequities. Thus, there would be no inequity at

all, and the optimal nonlinear pricing would be the same as in the standard model with no fairness issues.

Instead, we took an approach where the disutility from inequity emerges from different net surpluses each

type ends up with, rather than the difference in bundles picked by each type.

5.4 Inequity aversion or lack of information

Another interpretation of the distinction between fair and neutral type consumers can be their information

status. Instead of assuming people with different fairness concerns, we can think that they are all inequity-

averse but they only learn other people’s consumption bundle with some probability, γ. For example, one

would not be aware of the details of price discrimination in her flight if she does not check ticket prices at

different times and locations or talk with other passengers. Therefore, even though one has fairness concerns,

she may not be adversely affected by the inequity involved in price discrimination. This alternative view on

parameter γ allows us to explain a different setup with the same model.

6 Conclusion

We considered both a discrete and continuum type environments where a monopoly is using a nonlinear

pricing scheme facing buyers who may differ in their valuations and in their inequity preferences, in the sense

that some are inequity-averse (fair types) some are not (neutral types). We adopted the utility function

that takes inequity aversion into account provided by Fehr and Schmidt (1999). We characterized the

optimal nonlinear pricing assuming all types are served and also provided an analysis for the case where the

monopoly is allowed to exclude some buyers. The suboptimality already present in the standard nonlinear

pricing problem, is larger when there are fair types in the buyer population. Monopoly is worse off, but some

or all of the neutral types are better off when fair types are introduced.
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7 Appendix

7.1 Appendix A

Proof of Proposition 1. We prove Proposition 1 through a series of lemmas, Lemma 2 through 13. We

start with assuming V2 > V1 and V2 > Vf , which will be verified in the end of the proof.

Lemma 2 V1 = Vf and both IC1,f and ICf,1 bind.

Proof. If Vf ≤ V1, then ICf,1 becomes

Vf − α[(1− γ)λ(V1 − Vf ) + (1− λ)(V2 − Vf )] ≥ V1 − α[(1− λ)(V2 − V1)]

which is (V1 − Vf )(1 + α[(1 − γ)λ + (1 − λ)]) ≤ 0, implying V1 ≤ Vf . Thus, if Vf ≤ V1, we need to have

V1 = Vf . Now, if Vf ≥ V1, then ICf,1 becomes

Vf − α[(1− λ)(V2 − Vf )] ≥ V1 − α[(1− λ)(V2 − V1)]

which is (Vf − V1)(1 + α(1 − λ)) ≥ 0, which is consistent with Vf ≥ V1. Thus, Vf < V1 is ruled out. Now,

Vf ≥ V1 together with IC1,f , which is V1 ≥ Vf , we get V1 = Vf . Therefore, both IC1,f and ICf,1 bind.
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Lemma 3 ICf,2 is redundant.

Proof. Note that, V2−V 2
1 = θ2u(q2)−T2− [θ1u(q2)−T2] = (θ2− θ1)u(q2) ≥ 0 since θ2 > θ1. Also, by IC1,2

we have V1 ≥ V 2
1 . Then, using these together with Lemma 2, (ICf,2) becomes

Vf − α(1− λ)(V2 − Vf ) ≥ V 2
1 − α[(1− γ)λ(V1 − V 2

1 ) + (1− λ)(V2 − V 2
1 )]

Simplfying this, we get (Vf − V 2
1 )(1 + α(1− λ)) ≥ (V 2

1 − V1)(αλ(1− γ)). This holds since V 2
1 − V1 ≤ 0 and

Vf − V 2
1 ≥ 0. The first inequality is IC1,2 and the second one follows from Vf = V1 ≥ V 2

1 .

Lemma 4 Both IR1 and IR2 hold with strict inequality.

Proof. If IR1 binds, that is, if V1 = 0 then by Lemma 1, Vf = 0. Then, IRf would be Vf−α(1−λ)(V2−Vf ) <

0, since V2 > Vf . Thus, IR1 cannot bind. Now assume, IR2 binds. Then, V2 = 0, which implies V1 < 0

since V2 > V1. Thus, IR2 does not bind.

Note that IRf boils down to Vf − α(1 − λ)(V2 − Vf ) ≥ 0, which is equivalent to Vf ≥ KV2 where

K = α(1−λ)
1+α(1−λ) ∈ (0, 1). Thus, the problem is

max{(qi,Ti)}i=f,1,2λγ[Tf − cqf ] + λ(1− γ)[T1 − cq1] + (1− λ)[T2 − cq2]

subject to V1 = Vf ≥ KV2, V1 ≥ V 2
1 , V2 ≥ V 1

2 and V2 ≥ V f
2 .

We will ignore V1 ≥ V 2
1 for the moment and will characterize the optimal non-liner pricing in the reduced

problem without this constraint. Then, after characterizing the optimal nonlinear pricing, I will show that

V1 > V 2
1 actually holds.

Lemma 5 V1 = Vf ≥ KV2 holds with equality.

Proof. Otherwise, θ1u(q1)−T1 > Kθ2u(q2)−KT2. Then, monopoly can increase all of the T1, Tf and T2 by a

small enough ε > 0, still satisfy V1 = Vf ≥ KV2, increase profits and not violate any of the other constraints.

Note that θ1u(q1) − T1 − ε ≥ Kθ2u(q2) −KT2 −Kε, that is, θ1u(q1) − T1 ≥ Kθ2u(q2) −KT2 + ε(1 −K)

for small enough ε > 0, where 0 < K < 1. Also note that V2 ≥ V 1
2 and V2 ≥ V f

2 are not violated since

both sides of these inequalities are increased by the same amount ε. Also, V1 > V 2
1 is not violated for small

enough ε because of the strict inequality.

Lemma 6 If q1 > qf then V2 = V 1
2 > V f

2 .
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Proof. V1 = Vf implies θ1u(q1) − T1 = θ1u(qf ) − Tf . Thus, T1 − Tf = θ1(u(q1) − u(qf )). Thus, q1 > qf

if and only if T1 > Tf . Now, V 1
2 − V

f
2 = θ2u(q1) − T1 − θ2u(qf ) + Tf = θ2(u(q1) − u(qf )) − (T1 − Tf ) =

θ2(u(q1)−u(qf ))− θ1(u(q1)−u(qf )) = (θ2− θ1)(u(q1)−u(qf )). Thus, q1 > qf if and only if V 1
2 > V f

2 . Thus,

if q1 > qf , we have V2 ≥ V 1
2 > V f

2 . Now, suppose V2 > V 1
2 , which is θ2u(q2) − T2 > θ2u(q1) − T1. Then,

increasing T2 by ε/K and increasing T1 by ε, for small enough ε, we get θ2u(q2)−T2−(ε/K) ≥ θ2u(q1)−T1−ε.

Doing this satisfies V1 = Vf ≥ KV2. It also does not violate V1 > V 2
1 or V2 > V f

2 for small enough ε. However,

it strictly increases the monopoly’s profits.

Thus, with the condition q1 > qf , the problem is reduced to

max{(qi,Ti)}i=f,1,2λγ[Tf − cqf ] + λ(1− γ)[T1 − cq1] + (1− λ)[T2 − cq2]

subject to V1 = Vf = KV2 and V2 = V 1
2 . Call this reduced problem P1.

Similarly, if we have q1 < qf , then the reduced problem would be

max{(qi,Ti)}i=f,1,2λγ[Tf − cqf ] + λ(1− γ)[T1 − cq1] + (1− λ)[T2 − cq2]

subject to V1 = Vf = KV2 and V2 = V f
2 . Call this reduced problem Pf .

Assumption 1 guarantees that each type is served, as well as non-negative payments. Note that θ1 >

(1 − λ(1 −K))θ2 is equivalent to θ1 > (1 − λ
1+α(1−λ))θ2. Given any λ, θ1 and θ2, with θ2 > θ1 > 0, we can

actually find a threshold ᾱ > 0 such that θ1 = (1 − λ
1+ᾱ(1−λ))θ2. This is because 1 − λ

1+α(1−λ) is strictly

increasing in α. So, since θ2 > θ1 > 0, there exists a small enough ᾱ > 0 such that θ1 = (1− λ
1+ᾱ(1−λ))θ2. So

for all 0 < α < ᾱ, we have θ1 > (1−λ(1−K))θ2. Alternatively, given any α, θ1 and θ2, with θ2 > θ1 > 0, we

can find a large enough λ̄ ∈ (0, 1) such that θ1 = (1 − λ̄
1+α(1−λ̄)

)θ2, since 1 − λ
1+α(1−λ) is strictly decreasing

in λ. For all 1 > λ > λ̄, we have θ1 > (1− λ(1−K))θ2. Note also that, a large enough λ or small enough α

ensures that the low types are served in the optimal nonlinear pricing.

Case 1: Suppose q1 > qf . Then we solve P1. Note that V1 = KV2 is equivalent to θ1u(q1) − T1 =

K[θ2u(q2)− T2]. And, V2 = V 1
2 is equivalent to θ2u(q2)− T2 = θ2u(q1)− T1. Solving these two equalities for

T1 and T2, we get

T1 = θ2u(q1)− θ2 − θ1

1−K
u(q1) =

θ1 −Kθ2

1−K
u(q1)

T2 = θ2u(q2)− θ2 − θ1

1−K
u(q1) = θ2(u(q2)− u(q1)) +

θ1 −Kθ2

1−K
u(q1)

29



Note that, since Vf = V1, that is, θ1u(qf )−Tf = θ1u(q1)−T1, we can write Tf = θ1(u(qf )−u(q1))+T1 =

θ1(u(qf )− u(q1)) + θ1−Kθ2
1−K u(q1).26

Now, we can insert these expressions for {Ti}i=f,1,2 into the objective function and reduce the problem

to an unconstrained maximization problem where the only choice variables are qf ,q1 and q2. That is,

max{qi}i=f,1,2 λγ[θ1(u(qf )− u(q1)) +
θ1 −Kθ2

1−K
u(q1)− cqf ]

+λ(1− γ)[
θ1 −Kθ2

1−K
u(q1)− cq1]

+(1− λ)[θ2u(q2)− θ2 − θ1

1−K
u(q1)− cq2]

Since this is a concave programming, the first order conditions will suffice. We have

θ1u
′(q∗f ) = c

θ2u
′(q∗2) = c

and

θ1u
′(q∗1) =

λ(1−K)θ1(1− γ)

λ(1−K)(θ2 − γθ1)− (θ2 − θ1)
c

Lemma 7 θ1u
′(q∗1) = c′ > c.

Proof. θ1u
′(q∗1) > c if and only if λ(1−K)θ1(1−γ)

λ(1−K)(θ2−γθ1)−(θ2−θ1) > 1 if and only if

λ(1−K)θ1(1− γ) > λ(1−K)(θ2 − γθ1)− (θ2 − θ1)

if and only if

θ2 − θ1 > λ(1−K)(θ2 − γθ1 − θ1(1− γ))

if and only if θ2−θ1 > λ(1−K)(θ2−θ1) if and only if 1 > λ(1−K). Since K = α(1−λ)
1+α(1−λ) , this last condition

is equivalent to 1 > λ(1− α(1−λ)
1+α(1−λ)) = λ

1+α(1−λ) , which is equivalent to 1+α(1−λ) > λ. This can be written

as 1 > λ− α(1− λ) = λ− α+ αλ = λ(1 + α)− α. Thus, we get 1 + α > λ(1 + α), which is always satisfied

since 1 > λ.

However, the quantity levels q∗f and q∗1 are such that q∗f > q∗1, contradicting the supposition for this Case

1. To see q∗f > q∗1, note that θ1u
′(q∗f ) = c < θ1u

′(q∗1). Thus, u′(q∗f ) < u′(q∗1), which implies q∗f > q∗1 since

u′′ < 0.
26Note that, θ1 ≥ (1− λ(1−K))θ2 implies θ1 ≥ Kθ2, which in turn implies T2 ≥ T1 ≥ 0.
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Case 2: Suppose q1 < qf . Then we solve Pf . Note that Vf = KV2 is equivalent to θ1u(qf ) − Tf =

K[θ2u(q2) − T2]. And, V2 = V f
2 is equivalent to θ2u(q2) − T2 = θ2u(qf ) − Tf . Solving these two equalities

for Tf and T2, we get

Tf = θ2u(qf )− θ2 − θ1

1−K
u(qf ) =

θ1 −Kθ2

1−K
u(qf )

T2 = θ2u(q2)− θ2 − θ1

1−K
u(qf ) = θ2(u(q2)− u(qf )) +

θ1 −Kθ2

1−K
u(qf )

Note that, since Vf = V1, that is, θ1u(qf )−Tf = θ1u(q1)−T1, we can write T1 = θ1(u(q1)−u(qf ))+Tf =

θ1(u(q1)− u(qf )) + θ1−Kθ2
1−K u(qf ).27

Now, we can insert these expressions for {Ti}i=f,1,2 into the objective function and reduce the problem

to an unconstrained maximization problem where the only choice variables are qf ,q1 and q2. That is,

max{qi}i=f,1,2 λγ[
θ1 −Kθ2

1−K
u(qf )− cqf ]

+λ(1− γ)[θ1(u(q1)− u(qf )) +
θ1 −Kθ2

1−K
u(qf )− cq1]

+(1− λ)[θ2u(q2)− θ2 − θ1

1−K
u(qf )− cq2]

Since this is a concave programming, the first order conditions will suffice. We have

θ1u
′(q∗f ) =

λ(1−K)θ1(1− γ)

λ(1−K)(θ2 − γθ1)− (θ2 − θ1)
c

θ2u
′(q∗2) = c

θ1u
′(q∗1) = c

Lemma 8 θ1u
′(q∗f ) > c.

Proof. Follows from λ(1−K)θ1(1−γ)
λ(1−K)(θ2−γθ1)−(θ2−θ1) > 1 which was shown in the proof of Lemma 7.

However, the quantity levels q∗f and q∗1 are such that q∗1 > q∗f , contradicting the supposition for this Case

2. To see q∗1 > q∗f , note that θ1u
′(q∗1) = c < θ1u

′(q∗f ). Thus, u′(q∗1) < u′(q∗f ), which implies q∗1 > q∗f since

u′′ < 0.

Thus, Case 1 and Case 2 together imply the following lemma:

Lemma 9 q∗f = q∗1 and T ∗f = T ∗1 .

27Note that, if θ1 ≥ Kθ2, then T2 ≥ Tf ≥ 0.
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Proof. q∗f = q∗1 follows from the analysis conducted in Case 1 and Case 2. T ∗f = T ∗1 follows from q∗f = q∗1

and V1 = Vf .

Now, in the light of Lemma 9, the reduced problem is

max{(qi,Ti)}i=1,2
λγ[T1 − cq1] + λ(1− γ)[T1 − cq1] + (1− λ)[T2 − cq2]

subject to T1 = θ1−Kθ2
1−K u(q1) and T2 = θ2(u(q2)− u(q1)) + T1. Inserting T1 and T2, we get

max{qi}i=1,2
λ[
θ1 −Kθ2

1−K
u(q1)− cq1] + (1− λ)[θ2(u(q2)− u(q1)) +

θ1 −Kθ2

1−K
u(q1)− cq2]

or

max{q1,q2}
θ1 −Kθ2

1−K
u(q1) + (1− λ)θ2(u(q2)− u(q1))− λcq1 − (1− λ)cq2

First order conditions give

θ1u
′(q∗f ) = θ1u

′(q∗1) =
λ(1−K)θ1

λ(1−K)θ2 − (θ2 − θ1)
c > c

θ2u
′(q∗2) = c

Note that λ(1−K)θ1
λ(1−K)θ2−(θ2−θ1) > 1 is a special case of the proof of Lemma 7, with γ = 0. Thus, it immediately

follows. Also, note that the denominator is always non-negative under Assumption 1, since θ1 > (1− λ(1−

K))θ2 implies λ(1−K)θ2 > θ2 − θ1.

Lemma 10 q∗2 > q∗1 = q∗f .

Proof. We have θ1u
′(q∗f ) = θ1u

′(q∗f ) > c = θ2u
′(q∗2) where θ2 > θ1. Thus, u′(q∗f ) = u′(q∗1) > u′(q∗2). Since

u′′ < 0, we get q∗2 > q∗f = q∗1.

Lemma 11 T ∗2 > T ∗f = T ∗1 .

Proof. T ∗f = T ∗1 directly follows from q∗f = q∗1 and V1 = Vf . And, T ∗2 = θ2(u(q∗2) − u(q∗1)) + T ∗1 > T ∗1 since

q∗2 > q∗1 and u′ > 0. Thus, T ∗2 > T ∗f > T ∗1 .

Finally, we need to check V1 ≥ V 2
1 constraint at the optimal levels, as well as V2 > V1 = Vf .

Lemma 12 V1 > V 2
1 at {(q∗i , T ∗i )}i=f,1,2.

Proof. V1 > V 2
1 if and only if θ1u(q∗1)− T ∗1 > θ1u(q∗2)− T ∗2 if and only if T ∗2 − T ∗1 > θ1(u(q∗2)− u(q∗1)) if and

only if θ2(u(q∗2)− u(q∗1)) > θ1(u(q∗2)− u(q∗1)) if and only if θ2 > θ1, which holds.
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Lemma 13 V2 > V1 = Vf at {(q∗i , T ∗i )}i=f,1,2.

Proof. V2 = θ2u(q∗2) − T ∗2 = θ2u(q∗2) − θ2(u(q∗2) − u(q∗1)) − T ∗1 = θ2u(q∗1) − T ∗1 > θ1u(q∗1) − T ∗1 = V1 since

θ2 > θ1.

This finishes the proof of Propostion 1. �

7.2 Appendix B

Proof of Lemma 1. We prove Lemma 1 through a series of lemmas, Lemma 14 through 24.

Lemma 14 If θ′ > θ then V (qn(θ′), θ′) > V (qn(θ), θ).

Proof. V (qn(θ′), θ′) = maxq θ
′u(q)− T (q) ≥ θ′u(qn(θ))− T (qn(θ)) > θu(qn(θ))− T (qn(θ)) = V (qn(θ), θ)

Lemma 15 If θ′ > θ then W (qf (θ′), θ′) > W (qf (θ), θ).

Proof. A fair type with the demand type θ′ has the following utility.

W (qf (θ′), θ′) = max
q
V (q, θ′)− α[γ

∫ θ̄

θ
max{V (qf (θ̂), θ̂)− V (q, θ′), 0}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{V (qn(θ̂), θ̂)− V (q, θ′), 0}f(θ̂)dθ̂]

By ICf,f we have W (qf (θ′), θ′) ≥W (qf (θ), θ′) for any other θ. Thus, we have

W (qf (θ′), θ′) ≥ V (qf (θ), θ′)− α[γ

∫ θ̄

θ
max{V (qf (θ̂), θ̂)− V (qf (θ), θ′), 0}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{V (qn(θ̂), θ̂)− V (qf (θ), θ′), 0}f(θ̂)dθ̂]

≥ V (qf (θ), θ)− α[γ

∫ θ̄

θ
max{V (qf (θ̂), θ̂)− V (qf (θ), θ), 0}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{V (qn(θ̂), θ̂)− V (qf (θ), θ), 0}f(θ̂)dθ̂]

= W (qf (θ), θ)

where the second inequality above follows from the fact that V (q, θ′) ≥ V (q, θ) when θ′ > θ, since V (q, θ′) =

θ′u(q)− T (q) ≥ θu(q)− T (q) = V (q, θ).28 Thus, we have W (qf (θ′), θ′) ≥W (qf (θ), θ) when θ′ > θ.
28Note that this observation is slightly different from what we have in Lemma 14.
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Lemma 16 For all θ, V (qn(θ), θ) ≥ V (qf (θ), θ).

Proof. By ICn,f (θ), V (qn(θ), θ) = maxq θu(q)− T (q) ≥ θu(qf (θ))− T (qf (θ)) = V (qf (θ), θ).

Lemma 17 If θ′ > θ, then V (qf (θ′), θ′) > V (qf (θ), θ).

Proof. W (V ) = V −α
[
γ
∫ θ̄
θ max{0, V (qf (θ̂), θ̂)−V }f(θ̂)dθ̂+(1−γ)

∫ θ̄
θ max{0, V (qn(θ̂), θ̂)−V }f(θ̂)dθ̂

]
≥ 0

is increasing in V . Then, by Lemma 15 we have V (qf (θ′), θ′) > V (qf (θ), θ) for θ′ > θ.

Lemma 18 Under Assumption 2, qn(θ) is strictly increasing in θ.

Proof. Suppose θ̂ > θ. Then, from the first order conditions of the optimizations of θ̂ type and θ type neutral

buyers, we have θ̂u′(qn(θ̂))−T ′(qn(θ̂)) = 0 and θu′(qn(θ))−T ′(qn(θ)) = 0. Then, θ̂u′(qn(θ))−T ′(qn(θ)) > 0

since θ̂ > θ and u′(·) > 0. Thus, V ′(qn(θ̂), θ̂) = θ̂u′(qn(θ̂)) − T ′(qn(θ̂)) = 0 and V ′(qn(θ), θ̂) = θ̂u′(qn(θ)) −

T ′(qn(θ)) > 0 together imply qn(θ̂) > qn(θ), since V (q, θ) is strictly concave in q.

Lemma 19 For any θ, IRn(θ) is implied by IRn(θ).

Proof. By Lemma 14, we have V (qn(θ), θ) > V (qn(θ), θ) since θ > θ. When IRn(θ) holds we have

V (qn(θ), θ) ≥ 0. Thus, V (qn(θ), θ) > 0, that is IRn(θ) holds.

Lemma 20 For any θ, IRf (θ) is implied by IRf (θ).

Proof. By Lemma 15, we have W (qf (θ), θ) > W (qf (θ), θ) since θ > θ. When IRf (θ) holds we have

W (qf (θ), θ) ≥ 0. Thus, W (qf (θ), θ) > 0, that is IRf (θ) holds.

Lemma 21 If IRf (θ) holds, then all IR constraints hold.

Proof. When IRf (θ) holds, all IRf (θ) hold for any θ by Lemma 20. And since IRf (θ) holds, we have

W (qf (θ), θ) = V (qf (θ), θ)− α[γ

∫ θ̄

θ
max{(V (qf (θ̂), θ̂)− V (qf (θ, θ)), 0}f(θ̂)dθ̂

+(1− γ)

∫ θ̄

θ
max{(V (qn(θ̂), θ̂)− V (qf (θ), θ)), 0}f(θ̂)dθ̂] ≥ 0

Note that V (qn(θ), θ) ≥ V (qf (θ), θ) ≥W (qf (θ), θ) ≥ 0, where the first inequality follows from Lemma 16

and the second inequality follows from

α[γ

∫ θ̄

θ
max{(V (qf (θ̂), θ̂)−V (qf (θ), θ)), 0}f(θ̂)dθ̂+(1−γ)

∫ θ̄

θ
max{(V (qn(θ̂), θ̂)−V (qf (θ), θ)), 0}f(θ̂)dθ̂] ≥ 0
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Thus, V (qn(θ), θ) ≥ 0, that is IRn(θ) holds. By Lemma 19, all IRn(θ) also hold for any θ. Thus, all IR

constraints hold when, IRf (θ).

Lemma 22 For all θ, V (qn(θ), θ) = V (qf (θ), θ).

Proof. For any given θ, ICn,f (θ) implies that V (qn(θ), θ) ≥ V (qf (θ), θ). Also, ICf,n(θ) impliesW (V (qf (θ), θ)) ≥

W (V (qn(θ), θ)), where

W (V ) = V − α
[
γ

∫ θ̄

θ
max{0, V (qf (θ̂), θ̂)− V }f(θ̂)dθ̂ + (1− γ)

∫ θ̄

θ
max{0, V (qn(θ̂), θ̂)− V }f(θ̂)dθ̂

]

Since W (V ) is increasing in V , we have V (qf (θ), θ) ≥ V (qn(θ), θ) for all θ. Thus, for all θ we have

V (qn(θ), θ) = V (qf (θ), θ).

Lemma 23 Under Assumption 2, qf (θ) = qn(θ) for all θ.

Proof. For any given θ, V (qn(θ), θ) = V (qf (θ), θ) by Lemma 22. By Assumption 2, solution to V ′(q, θ) = 0

is unique, thus, qf (θ) = qn(θ)

Lemma 24 Under Assumption 2, ICn,n(θ) implies ICn,f (θ), ICf,f (θ) and ICf,n(θ), for all θ.

Proof. ICn,f (θ) holds since θu(qn(θ)) − T (qn(θ)) ≥ θu(qn(θ̂)) − T (qn(θ̂)) = θu(qf (θ̂)) − T (qf (θ̂)) for

all θ̂, where the first inequality is by ICn,n(θ) and the second inequality is by Lemma 23. To see that

ICf,f (θ) holds, note that by ICn,n(θ), we have V (qn(θ), θ) ≥ V (qn(θ̂), θ). Since W (V ) is increasing in V ,

we have W (V (qn(θ), θ)) ≥ W (V (qn(θ̂), θ)). By Lemma 23, we have qf (θ) = qn(θ) and qf (θ̂) = qn(θ̂). Thus,

W (V (qf (θ), θ)) ≥W (V (qf (θ̂), θ)) for all θ̂. ICf,n(θ) follows from ICf,f (θ) and qf (θ̂) = qn(θ̂).

Combining Lemma 21 and 24, we reduce the monopoly’s problem to the following problem.

max{qt(θ),Tt(θ)}θ∈[θ,θ̄],t∈{f,n}

∫ θ̄

θ
[γ[Tf (θ)− cqf (θ)] + (1− γ)[Tn(θ)− cqn(θ)]]f(θ)dθ

subject to

IRf (θ) : W (θ) ≥ 0 and

ICn,n(θ) : θu′(qn(θ))− T ′(qn(θ)) = 0 for all θ.

Note that IRf (θ) boils down to V (qf (θ), θ)−α[
∫ θ̄
θ (V (qf (θ̂), θ̂)−V (qf (θ), θ))f(θ̂)dθ̂] ≥ 0. Also note that

this IRf (θ) must bind, otherwise the monopoly could keep the quantities the same and ask for a larger

payment without violating any other constraint. Thus, we must have W (θ) = 0.
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Again by Lemma 23, ICn,n(θ) is equivalent to θu′(qf (θ)) − T ′(qf (θ)) = 0 for all θ. Also, the objective

function boils down to one below. Thus, we have the reduced problem as follows

max{qf (θ),T (qf (θ))}θ∈[θ,θ̄]

∫ θ̄

θ
[T (qf (θ))− cqf (θ)]f(θ)dθ

subject to

IRf (θ) : V (qf (θ), θ)− α[
∫ θ̄
θ (V (qf (θ̂), θ̂)− V (qf (θ), θ))f(θ̂)dθ̂] = 0 and

ICn,n(θ) : θu′(qf (θ))− T ′(qf (θ)) = 0 for all θ. which finishes the proof of Lemma 1. �

7.3 Appendix C

Lemma 25 θ̃f ≥ θ̃n.

Proof. Suppose θ̃n > θ̃f . Then, by IRf (θ̃f ), we have W (q(θ̃f ), θ̃f ) ≥ 0. Note that W (V ) = V −

α
[
γ
∫ θ̄
θ max{0, V (qf (θ̂), θ̂)− V }f(θ̂)dθ̂+ (1− γ)

∫ θ̄
θ max{0, V (qn(θ̂), θ̂)− V }f(θ̂)dθ̂

]
≥ 0 is increasing in V .

Then, by Lemma 15 we have V (qf (θ′), θ′) > V (qf (θ), θ) for θ′ > θ. Thus,
∫ θ̄
θ max{0, V (qf (θ̂), θ̂)−V }f(θ̂)dθ̂ >

0, that is, V (q(θ̃f ), θ̃f ) > 0. Therefore, neutral type with taste parameter θ̃f can mimic fair type and pur-

chase q(θ̃f ) to get positive net utility rather than being excluded and getting zero. Hence, it must be θ̃f ≥ θ̃n

in the optimal nonlinear pricing.

By Lemma 25, the monopoly sells only to neutral types for the interval [θ̃n, θ̃f ] and to both types for

higher values of θ. Thus, the monopoly profit becomes

Π(θ̃f , θ̃n) = (1− γ)

∫ θ̄

θ̃n

(
T (qn(θ))− cqn(θ)

)
f(θ)dθ + γ

∫ θ̄

θ̃f

(
T (qf (θ))− cqf (θ)

)
f(θ)dθ

The following Lemma provides a reduced problem equivalent to the monopoly’s original problem.

Lemma 26 The monopoly’s problem reduces to maxqn,qfΠ(θ̃f , θ̃n) subject to

IRn(θ̃n) : V (q(θ̃n), θ̃n) = 0,

IRf (θ̃f ) : V (q(θ̃f ), θ̃f )− α[
∫ θ̄
θ̃f

(V (q(θ̂), θ̂)− V (q(θ̃f ), θ̃f ))f(θ̂)dθ̂] = 0,

ICn,n(θ) : θu′(q(θ))− T ′(q(θ)) = 0 for all θ ∈ [θ̃n, θ̃f ],

ICn,n(θ) : θu′(q(θ))− T ′(q(θ)) = 0 for all θ ∈ [θ̃f , θ̄] and∫ θ̃f
θ̃n

u(qn(θ))dθ = α
∫ θ̄
θ̃f
u(qf (θ))(1− F (θ))dθ

Proof. We prove by a series of lemmas, Lemma 27 through 30, similar to those in Appendix 7.2.

Lemma 27 For any θ ≥ θ̃n, IRn(θ) is implied by IRn(θ̃n).
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Proof. The proof is similar to the proof of Lemma 19, where we use V (qn(θ′), θ′) > V (qn(θ), θ) for all

θ′, θ ≥ θ̃n with θ′ > θ, which is proven by a similar argument in the proof of Lemma 14.

Lemma 28 For any θ ≥ θ̃f , IRf (θ) is implied by IRf (θ̃f ).

Proof. The proof is similar to the proof of Lemma 20, where we use W (qf (θ′), θ′) > W (qf (θ), θ) for all

θ′, θ ≥ θ̃n with θ′ > θ, which is proven by a similar argument in the proof of Lemma 15.

Lemma 29 Under Assumption 2, qf (θ) = qn(θ) for all θ ≥ θ̃f .

Proof. Using the proof of Lemma 22, we get, for all θ ≥ θ̃f , V (qn(θ), θ) = V (qf (θ), θ). Then, by a similar

proof of Lemma 23, we get qf (θ) = qn(θ) for all θ ≥ θ̃f .

Lemma 30 Under Assumption 2, all IC constraints are implied by the following three constraints

(i) ICn,n(θ) for all θ ∈ [θ̃n, θ̃f ],

(ii) ICn,n(θ) for all θ ∈ [θ̃f , θ̄] and

(iii)
∫ θ̃f
θ̃n

u(qn(θ))dθ = α
∫ θ̄
θ̃f
u(qf (θ))(1− F (θ))dθ

Proof. First, we need to show that ICn,n(θ) for all θ ∈ [θ̃n, θ̄] is implied by these three constraints. Take

θ1 ∈ [θ̃n, θ̃f ] and θ2 ∈ [θ̃f , θ̄]. Constraint (i) implies that V (θ1, qn(θ1)) ≥ V (θ1, qn(θ̃f )) which is equivalent to

θ1u(qn(θ1))− θ1u(qn(θ̃f )) ≥ T (qn(θ1))− T (qn(θ̃f ))

Constraint (ii) implies that V (θ̃f , qf (θ̃f )) ≥ V (θ̃f , qf (θ2)). By constraint (iii) we know that V (θ̃f , qf (θ̃f )) =

V (θ̃f , qn(θ̃f )). Hence, the implication of constraint (ii) becomes

θ̃fu(qn(θ̃f ))− θ̃fu(qf (θ2)) ≥ T (qn(θ̃f ))− T (qf (θ2))

By adding up two inequalities, we get

θ1u(qn(θ1))− θ1u(qn(θ2)) + (θ̃f − θ1)(u(qn(θ̃f ))− u(qf (θ2))) ≥ T (qn(θ1))− T (qf (θ2))

By Lemma 29, qf (θ) = qn(θ) for all θ ≥ θ̃f . Since qf (θ) and u(q) are increasing functions, u(qn(θ̃f ))−u(qf (θ2))

is negative and we have

(θ̃f − θ1)(u(qn(θ̃f ))− u(qf (θ2))) ≤ 0
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This implies ICn,n(θ1) for θ2:

θ1u(qn(θ1))− θ1u(qn(θ2)) ≥ T (qn(θ1))− T (qf (θ2))

We can prove ICn,n(θ1) for θ2 by the same reasoning. We showed that ICn,n(θ) for all θ ∈ [θ̃n, θ̄] is implied

by these three constraints. Then, we can apply the proof of Lemma 24.

This finishes the proof of Lemma 26.

The next result characterizes the optimal quantities and the thresholds, θ̃n and θ̃f .

Lemma 31 In the optimal nonlinear pricing when exclusion is allowed, the quantities should be q∗n(θ) and

q∗f (θ) with q∗n(θ) = q∗f (θ) for all θ ∈ [θ̃f , θ̄], where

(i) q∗n(θ) solves u′(q(θ))[θ + F (θ)−F (θ̃n)
f(θ) ] = c, in [θ̃n, θ̃f ].

(ii) q∗f (θ) solves u′(q(θ))[θ −H(θ)− α(1− F (θ̃f ))H(θ)− (1− γ)(F (θ̃f )− F (θ̃n))αH(θ)] = c, in [θ̃f , θ̄].

and thresholds θ̃n and θ̃f solve

(iii)
∫ θ̃f
θ̃n
u(qn(θ))f(θ̃n)dθ+

∫ θ̄
θ̃f
f(θ̃n)αu(qf (θ))(1−F (θ))dθ−

(
θu(qn(θ))+u(qn(θ))F (θ)−F (θ̃n)

f(θ) −cqn(θ)
)
f(θ) = 0

(iv)
∫ θ̃f
θ̃n

u(qn(θ))dθ = α
∫ θ̄
θ̃f
u(qf (θ))(1− F (θ))dθ

Proof. First, we solve quantities for a given θ̃n, then we maximize over θ̃n. Also note that q∗n(θ) = q∗f (θ) for

all θ ∈ [θ̃f , θ̄] follows directly from Lemma 29. This implies

Π(θ̃f , θ̃n) = (1− γ)

∫ θ̃f

θ̃n

(
T (qn(θ))− cqn(θ)

)
f(θ)dθ +

∫ θ̄

θ̃f

(
T (qf (θ))− cqf (θ)

)
f(θ)dθ

where

T (qn(θ)) = θu(qn(θ))− V (qn(θ), θ) = θu(qn(θ))− [

∫ θ

θ̃n

u(qn(θ̂))dθ̂ + V (qn(θ̃n), θ̃n)]

Since V (qn(θ̃n), θ̃n) = 0 by binding IRn(θ̃n), we have

T (qn(θ)) = θu(qn(θ))− V (qn(θ), θ) = θu(qn(θ))−
∫ θ

θ̃n

u(qn(θ̂))dθ̂

By the last condition in Lemma 26, at θ̃f , we have

∫ θ̃f

θ̃n

u(qn(θ))dθ = α

∫ θ̄

θ̃f

u(qf (θ))(1− F (θ))dθ

which implies

T (qn(θ)) = θu(qn(θ))− [α

∫ θ̄

θ̃f

u(qf (θ))(1− F (θ))dθ −
∫ θ̃f

θ
u(qn(θ̂))dθ̂]
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By IRf (θ̃f ) we have W (q∗f (θ̃f ), θ̃f ) = 0, that is

V (q(θ̃f ), θ̃f )− α[

∫ θ̄

θ̃f

(V (q(θ̂), θ̂)− V (q(θ̃f ), θ̃f ))f(θ̂)dθ̂] = 0

We also have

V (q(θ), θ) =

∫ θ

θ̃f

u(q(θ̂))dθ̂ + V (q(θ̃f ), θ̃f )

These two equations imply

T (qf (θ)) = θu(qf (θ))−
[ ∫ θ

θ̃f

u(qf (θ̂))dθ̂ + V (q(θ̃f ), θ̃f )
]

that is,

T (qf (θ)) = θu(qf (θ))−
∫ θ

θ̃f

u(qf (θ̂))dθ̂ − α
∫ θ̄

θ̃f

(∫ θ̂

θ̃f

u(q(θ′))dθ′
)
f(θ̂)dθ̂

By integration by parts we get

T (qf (θ)) = θu(qf (θ))−
∫ θ

θ̃f

u(qf (θ̂))dθ̂ − α[

∫ θ̄

θ̃f

u(qf (θ̂))(1− F (θ̂))dθ̂]

Thus, the profit becomes

Π(θ̃f , θ̃n) = (1− γ)

∫ θ̃f

θ̃n

(
θu(qn(θ))− [α

∫ θ̄

θ̃f

u(qf (θ))(1− F (θ))dθ −
∫ θ̃f

θ
u(qn(θ̂))dθ̂]− cqn(θ)

)
f(θ)dθ

+

∫ θ̄

θ̃f

(
θu(qf (θ))−

∫ θ

θ̃f

u(qf (θ̂))dθ̂ − α[

∫ θ̄

θ̃f

u(qf (θ))(1− F (θ))dθ]− cqf (θ)

)
f(θ)dθ

Integrating by parts gives

∫ θ̃f

θ̃n

∫ θ̃f

θ
u(qn(θ̂))dθ̂f(θ)dθ =

(
F (θ)

∫ θ̃f

θ
u(qn(θ̂))dθ̂

)∣∣∣θ̃f
θ̃n
−
∫ θ̃f

θ̃n

−u(qn(θ))F (θ)dθ

= −F (θ̃n)

∫ θ̃f

θ̃n

u(qn(θ))dθ +

∫ θ̃f

θ̃n

u(qn(θ))F (θ)dθ

=

∫ θ̃f

θ̃n

u(qn(θ))(F (θ)− F (θ̃n))dθ
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Since
∫ θ̄
θ̃f
u(qf (θ))(1− F (θ))dθ is a constant in Π(θ̃f , θ̃n), we can take it out of the integral and get

Π(θ̃f , θ̃n) = (1− γ)(F (θ̃n)− F (θ̃f ))α

∫ θ̄

θ̃f

u(qf (θ))(1− F (θ))dθ

+ (1− γ)

∫ θ̃f

θ̃n

(
θu(qn(θ)) + u(qn(θ))

F (θ)− F (θ̃n)

f(θ)
− cqn(θ)

)
f(θ)dθ

+

∫ θ̄

θ̃f

(
θu(qf (θ))− u(qf (θ))

(1− F (θ))

f(θ)
− αu(qf (θ))(1− F (θ̃f ))

(1− F (θ))

f(θ)
− cqf (θ)

)
f(θ)dθ

By rearranging we get,

Π(θ̃f , θ̃n) = (1− γ)

∫ θ̃f

θ̃n

(
θu(qn(θ)) + u(qn(θ))

F (θ)− F (θ̃n)

f(θ)
− cqn(θ)

)
f(θ)dθ

+

∫ θ̄

θ̃f

(
θu(qf (θ))− u(qf (θ))

(1− F (θ))

f(θ)
− αu(qf (θ))(1− F (θ̃f ))

(1− F (θ))

f(θ)

− (1− γ)(F (θ̃f )− F (θ̃n))αu(qf (θ))
(1− F (θ))

f(θ)
− cqf (θ)

)
f(θ)dθ

Similar to previous section, we should maximize pointwise. Thus, we have two equations for two different

intervals, which together characterize the optimal quantities and a FOC for optimal θ̃n.

For θ ∈ [θ̃n, θ̃f ], we have

u′(q(θ))[θ +
F (θ)− F (θ̃n)

f(θ)
] = c (4)

For θ ∈ [θ̃f , θ̄], we have

u′(q(θ))[θ −H(θ)− α(1− F (θ̃f ))H(θ)− (1− γ)(F (θ̃f )− F (θ̃n))αH(θ)] = c (5)

Finally, the threshold θ̃n solves

∫ θ̃f

θ̃n

u(qn(θ))f(θ̃n)dθ +

∫ θ̄

θ̃f

f(θ̃n)αu(qf (θ))(1− F (θ))dθ

−
(
θu(qn(θ)) + u(qn(θ))

F (θ)− F (θ̃n)

f(θ)
− cqn(θ)

)
f(θ) = 0 (6)

This finishes the proof of Lemma 31.

Therefore, there is pooling in the upper section of the demand type space, where the monopoly chooses

to sell to each fair and neutral types. Thus, when both types are served, there is pooling, which is parallel to

the result in the no exclusion case. But, in the intermediate range, the quantities differ for fair and neutral
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types, as for this range the monopoly excludes the fair types.

Lemma 32 q(θ1) ≥ q(θ2) for θ1 ∈ [θ̃n, θ̃f ] and θ2 ∈ [θ̃f , θ̄].

Proof. In Equation 4 and 5 above, we have

[θ +
F (θ)− F (θ̃n)

f(θ)
] ≥ θ ≥ [θ −H(θ)− α(1− F (θ̃f ))H(θ)− (1− γ)(F (θ̃f )− F (θ̃n))αH(θ)]

Since u′(·) is a decreasing function, q(θ) should increase to hold the equation.

Lemma 33 θ̃f = θ̃n

Proof. By Lemma 25 we showed θ̃f ≥ θ̃n. Suppose θ̃f > θ̃n. For neutral types with θ1 ∈ [θ̃n, θ̃f ] and

θ2 ∈ [θ̃f , θ̄] IC constraints are as follows:

IC1 : θ1q(θ1)− T (q(θ1)) ≥ θ1q(θ2)− T (q(θ2)) ⇒ T (q(θ2)) ≥ T (q(θ1)) + θ1(q(θ2)− q(θ1))

IC2 : θ2q(θ2)− T (q(θ2)) ≥ θ2q(θ1)− T (q(θ1)) ⇒ T (q(θ1)) + θ2(q(θ2)− q(θ1)) ≥ T (q(θ2))

Combining these two inequalities, we get,

T (q(θ1)) + θ2(q(θ2)− q(θ1)) ≥ T (q(θ2)) ≥ T (q(θ1)) + θ1(q(θ2)− q(θ1))

θ2(q(θ2)− q(θ1)) ≥ θ1(q(θ2)− q(θ1))

By Lemma 32, q(θ2) < q(θ1). Hence it contradicts with the supposition θ2 > θ1.

Lemma 34 θ̃f = θ̃n = θ

Proof. Suppose θ̃f = θ̃n > θ. Using IR constraint for θ̃f , we get

V (q(θ̃f ), θ̃f )− α[

∫ θ̄

θ̃f

(V (q(θ̂), θ̂)− V (q(θ̃f ), θ̃f ))f(θ̂)dθ̂] ≥ 0

Since V (·) is a strictly increasing function of θ, we have

V (q(θ̃f ), θ̃f ) > 0
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Using linearity of V (·) on θ, there exist ε > 0 such that for all θ ∈ (θ̃f − ε, θ̃f ) :

V (q(θ̃f ), θ) = θq(θ̃f )− T (q(θ̃f )) > 0

Therefore, for those neutral type buyers mimicking the threshold type is better than being excluded. It

contradicts the IC constraints of consumers with θ ∈ (θ̃f − ε, θ̃f ).

Therefore, we have shown that even if the monopoly is allowed to exclude some of the buyer types,

excluding some types is just not incentive feasible. Thus, the optimal thing to do for the monopoly is to not

exclude any types, as θ̃f = θ̃n = θ suggests. Thus, our analysis in Section 4.1 provides the optimal nonlinear

pricing even when we allow exclusion.

42


	Introduction
	Model
	Discrete Types
	Optimal nonlinear pricing

	Continuum of Types
	Optimal Nonlinear Pricing

	Discussion and Extensions
	Optimal nonlinear pricing with exclusion
	An alternative individual rationality constraint
	Evaluating the disutility from inequity
	Inequity aversion or lack of information 

	Conclusion
	Appendix
	Appendix A
	Appendix B
	Appendix C


