EC 203-INTERMEDIATE MICROECONOMICS
 Boğaziçi University - Department of Economics
 Fall 2019

 Problem Set 7 - Solutions

 Problem Set 7 - Solutions}

1. Suppose a firm has the production function $f(L, K)=L^{1 / 3} K^{1 / 3}-3$. The prices of the output, labor and capital are $p=9, w=3, r=1$, respectively.
(a) If the firm is operating in the short-run and has a fixed capital amount $\bar{K}=8$, then find the short-run profit maximizing labor amount.
Solution: The profit maximization problem in the short-run is given by
$\max _{q, L} \quad p q-w L-r \bar{K}=9\left[L^{1 / 3} \bar{K}^{1 / 3}-3\right]-3 L-\bar{K}=9\left[L^{1 / 3} 8^{1 / 3}-3\right]-3 L-8=9\left[2 L^{1 / 3}-3\right]-3 L-8$.
Then the first order condition is $9\left[2 / 3\left(L^{-2 / 3}\right)\right]=3$, that is, $L^{-2 / 3}=1 / 2$ or $L^{2 / 3}=2$, which implies $L_{S R}^{*}=8^{1 / 2}$.
(b) Suppose now the firm operates in the long-run. Find the profit maximizing capital and labor levels.

Solution: The profit maximization problem in the long-run is given by $\max _{q, L, K} p q-w L-r K$, which is $\max _{q, L, K} 9\left[L^{1 / 3} K^{1 / 3}-3\right]-3 L-K$. The first order conditions are as follows:
For L, we get $9\left[(1 / 3) L^{-2 / 3} K^{1 / 3}\right]=3$, that is, $L^{-2 / 3} K^{1 / 3}=1$
For K, we get $9\left[(1 / 3) L^{1 / 3} K^{-2 / 3}\right]=1$, that is, $L^{1 / 3} K^{-2 / 3}=1 / 3$
Combining these two we get, $K=3 L$.
Then, the profit is $9\left[L^{1 / 3}(3 L)^{1 / 3}-3\right]-3 L-3 L=9\left[L^{2 / 3}(3)^{1 / 3}-3\right]-6 L$.
The first order condition is $9\left[(3)^{1 / 3}(2 / 3) L^{-1 / 3}\right]=6$, that is, $(3)^{1 / 3} L^{-1 / 3}=1$ that is $L=3$, and $K=9$. However the profit is $9\left[3^{1 / 3} 9^{1 / 3}-3\right]-9-9=9\left[3^{1 / 3} 3-3\right]-18<0$. Thus, the optimal thing to do is to get $L_{L R}^{*}=0, K_{L R}^{*}=0$ and produce zero in the long-run (exit the market), $q^{*}=0$.
2. Suppose a firm has the production function $f(L, K)=L+2 K$. The output price is p. The prices of capital and labor are r and w, respectively.
(a) Find the cost minimizing L^{*} and K^{*} as functions of r and w. Suppose $r \neq 2 w$.

Solution: Think about the cost minimization problem to produce a certain amount q. Because the MRTS is not diminishing we will have corner solution and we compare $M P_{L} / w$ and $M P_{K} / r$, where $M P_{L}=1$ and $M P_{K}=2$.
If $1 / w>2 / r$, then produce all q with L, that is if $r / w>2, L=q$ and $K=0: c(q)=w L=w q$.
If $1 / w<2 / r$, then produce all q with K, that is if $r / w<2, L=0$ and $K=q / 2: c(q)=r K=r q / 2$. $L=q$ if $2 w<r, \quad 0$ if $2 w>r$, and $K=0$ if $2 w<r, q / 2$ if $2 w>r$
(b) Assume the prices are $p=12, w=15$ and $r=10$. Suppose the firm has a capacity constraint: it can produce at most 100 units. Find the profit maximizing quantity, and input combination. Find the profit level?
Solution: Note that $p M P_{L}=12 \cdot 1=12<15=w$. And, $p M P_{L}=12 \cdot 2=24>10=r$. Thus, increase K and decrease L. Since $M P_{L}$ and $M P_{K}$ are constants (note MRTS is not diminishing), need to decrease L all the way down to 0 , and produce all q with K, that is $K=q / 2$. Then the profit function is $12 q-10 K=12 q-10(q / 2)=12 q-5 q=7 q$ which is maximized at $q=\infty$, but there is a capacity constraint of 100 units, thus $q^{*}=100$. Thus, $L^{*}=0$ and $K^{*}=50$. The profit is $\pi=7 q^{*}=700$.
(c) Suppose that the firm is required to produce at full capacity $q=100$. Prices are as in part (b). Show that the cost minimizing input levels are exactly the same levels you found in part (b).
Solution: From part (a) we know that $L=0$ and $K=q / 2$ since at prices $w=15$ and $r=10$, we have $r / w<2$. Thus, cost minimizing levels are $L^{*}=0$ and $K^{*}=50$.
3. Suppose a firm has the production function $f(L, K)=K^{1 / 4} L^{1 / 2}$. The output price is p. The prices of capital and labor are r and w, respectively.
(a) Find the profit maximizing input demands $K^{*}(p, r, w)$ and $L^{*}(p, r, w)$.

Solution: We can first write profits as a function of the choice variables K and L as follows:

$$
\pi(K, L, p, r, w)=p q-w L-r K=p K^{1 / 4} L^{1 / 2}-w L-r K .
$$

Taking the first order conditions with respect to the choice variables K and L, respectively, yields

$$
\begin{aligned}
& \frac{1}{4} p K^{-3 / 4} L^{1 / 2}=r \\
& \frac{1}{2} p K^{1 / 4} L^{-1 / 2}=w
\end{aligned}
$$

Solving the two equations together for the two unknowns K and L yields

$$
\begin{aligned}
K^{*}(p, r, w) & =\frac{p^{4}}{64 r^{2} w^{2}} \\
L^{*}(p, r, w) & =\frac{p^{4}}{32 r w^{3}}
\end{aligned}
$$

(b) Find the profit maximizing output q^{*} and profit in terms of p, r and w.

Solution: The output is given simply by

$$
q^{*}(p, r, w)=q\left(K^{*}(p, r, w), L^{*}(p, r, w)\right)=\left(\frac{p^{4}}{64 r^{2} w^{2}}\right)^{1 / 4}\left(\frac{p^{4}}{32 r w^{3}}\right)^{1 / 2}=\frac{p^{3}}{16 r w^{2}}
$$

and the profit function by

$$
\begin{aligned}
\pi(p, r, w) & =p q\left(K^{*}(p, r, w), L^{*}(p, r, w)\right)-w L^{*}(p, r, w)-r K^{*}(p, r, w) \\
& =p \frac{p^{3}}{16 r w^{2}}-w \frac{p^{4}}{32 r w^{3}}-r \frac{p^{4}}{64 r^{2} w^{2}} \\
& =\frac{p^{4}}{16 r w^{2}}-\frac{p^{4}}{32 r w^{2}}-\frac{p^{4}}{64 r w^{2}} \\
& =\frac{p^{4}}{64 r w^{2}}
\end{aligned}
$$

(c) Law of Output Supply states that the output supply is increasing in output price, and Law of Input Demand states that input demands $K^{*}(p, r, w)$ and $L^{*}(p, r, w)$ are decreasing in their own prices, r and w respectively? Are your answers consistent with the Law of Output Supply and Law of Input Demand? Explain.

Solution: From our answers in part (a), we can see that L^{*} is decreasing in w and K^{*} is decreasing in r. The output is increasing in p. Thus, both Law of Output Supply and Law of Input Demands hold.
(d) In the short-run, suppose capital is fixed at $\bar{K}=\frac{1}{64}$. Find the resulting short-run input labor demand and output supply functions, $L^{S R}(p, r, w ; \bar{K})$ and $q^{S R}(p, r, w ; \bar{K})$.
Solution: We have that $\bar{K}=\frac{1}{64}$, so the firm is now maximizing the profit function

$$
\begin{aligned}
\pi(\bar{K}, L, p, r, w) & =p q(\bar{K}, L)-w L-r \bar{K} \\
& =p \bar{K}^{1 / 4} L^{1 / 2}-w L-r \bar{K} \\
& =p\left(\frac{1}{64}\right)^{1 / 4} L^{1 / 2}-w L-r\left(\frac{1}{64}\right)
\end{aligned}
$$

with L as its only remaining choice variable. Taking the first order condition with respect to L, we get

$$
\frac{1}{2} p\left(\frac{1}{64}\right)^{1 / 4} L^{-1 / 2}=w
$$

and solving for L yields

$$
L^{S R}(p, r, w ; \bar{K})=\frac{p^{2}}{32 w^{2}}
$$

The short-run output is then given by

$$
q^{S R}(p, r, w ; \bar{K})=q\left(\bar{K}, L^{S R}(p, r, w ; \bar{K})\right)=\bar{K}^{1 / 4} L^{S R}(p, r, w ; \bar{K})^{1 / 2}=\left(\frac{1}{64}\right)^{1 / 4}\left(\frac{p^{2}}{32 w^{2}}\right)^{1 / 2}=\frac{p}{16 w} .
$$

4. Suppose a firm has the production function $f(K, L)=\sqrt{\min \{K, L\}}$. The output price is p. The prices of capital and labor are r and w, respectively. Find the firm's supply function $q^{*}(p, r, w)$, by the help of the solution to the cost-minimization problem.

Solution: The firm's cost minimization problem is

$$
\begin{array}{ll}
\min _{K, L \geq 0} & r K+w L \\
\text { subj. to } & \sqrt{\min \{K, L\}} \geq q,
\end{array}
$$

so writing the production constraint as an equality yields $\min \{K, L\}=q^{2}$, and since the firm's output depends on the minimum of K and L it will always minimize cost to choose $K=L$, and so we immediately get $K=q^{2}$ and $L=q^{2}$, so conditional input demands are

$$
K(q, r, w)=q^{2} \quad \text { and } \quad L(q, r, w)=q^{2}
$$

and so the cost function becomes

$$
\begin{aligned}
c(q, r, w) & =r K(q, r, w)+w L(q, r, w) \\
& =(r+w) q^{2} .
\end{aligned}
$$

The firm maximizes profit by choosing the output q which solves

$$
\max _{q \geq 0} p q-c(q, r, w)
$$

which in this case becomes

$$
\max _{q \geq 0} p q-(r+w) q^{2}
$$

The FOC yields the $p=M C$ condition

$$
p-2(r+w) q=0 \Leftrightarrow q=\frac{p}{2(r+w)} .
$$

and the second derivative is negative, and so the firm's supply function is

$$
q^{*}(p, r, w)=\frac{p}{2(r+w)} .
$$

5. The cost function for a firm is $c(q)=10+10 q+q^{2}$, where q is output level. Assume the market, that this firm operates in, is perfectly competitive.
(a) What q should the firm choose to maximize its profit if the market price is $p=50$?

Solution: In a competitive market a firm will have $p=M C(q)$ which yileds $p=10+2 q$, that is, $q=\frac{p-10}{2}$. At $p=50, q=(50-10) / 2=20$. Then the profit is $p q-c(q)=50 \cdot 20-\left[10+10 \cdot 20+20^{2}\right]=$ $1000-10-200-400=390>0$. Thus, the firm actually produces $q^{*}=20$.
(b) What is the short-run supply curve of this firm?

Solution: The short-run supply is the marginal cost curve above the average variable cost curve. We have $A V C(q)=10+q$ which attains it's minimum at $q=0$, thus short-run supply is the entire $M C(q)=10+2 q$, that is, $q^{S R}$ is given by $q^{S R}=\frac{p-10}{2}$ for all $p \geq 10$, and $q^{S R}=0$ for all $p<10$.
6. The cost function for a firm is $c(q)=10+10 q-q^{2}+(1 / 3) q^{3}$, where q is output level. Assume the market, that this firm operates in, is perfectly competitive.
(a) What is its profit-maximizing condition? What is its short-run supply curve?

Solution: Marginal cost is given by $M C(q)=10-2 q+q^{2}$. Thus the profit maximizing condition is $p=10-2 q+q^{2}$, or $q(q-2)=p-10$.
The short-run supply is given by the $M C(q)$ curve above the $A V C(q)$ curve, where $A V C(q)=10-q+$ $(1 / 3) q^{2}$. Since MC intersects AVC at its minimum, we can find the intersection point first: $M C(q)=$ $A V C(q)$ that is $10-2 q+q^{2}=10-q+(1 / 3) q^{2}$, which implies $q^{2}=q+(1 / 3) q^{2}$, or $q=1+(1 / 3) q$, that is $q=3 / 2$. At $q=3 / 2, M C=A V C=9.25$. Thus, the SR supply is given by: If $p<9.25$ choose $q=0$, and if $p \geq 9.25$, choose q such that $p=10-2 q+q^{2}$.
(b) What is the exit decision for this firm if $p=13$?

Solution: Exit if $p<A T C(q)$, that is, $13<\frac{10}{q}+10-q+\frac{1}{3} q^{2}$, or $3<\frac{10}{q}-q+\frac{1}{3} q^{2}$, where q is such that $13=M C(q)=10-2 q+q^{2}$, that is, $3=-2 q+q^{2}$, or $q^{2}-2 q-3=0$ which is equivalent to $(q-3)(q+1)=0$, thus $q=3\left(q=-1\right.$ is not possible). Plug $q=3$ into $A T C(q)=\frac{10}{q}+10-q+\frac{1}{3} q^{2}=$ $(10 / 3)+10-3+(1 / 3) 9=10+10 / 3=13.3$ and we get $13=p<A T C=13.3$, thus firm exits.
7. The cost function for a firm is

$$
c(q)= \begin{cases}4 & \text { if } q=0 \\ q^{2}+20 & \text { if } q>0\end{cases}
$$

(a) Find the lowest price the firm will operate in the short-run, that is the minimum price that the firm will not shut down.
Solution: The firm will operate as long as $p \geq A V C(q)$, and when it operates it will choose q such that $p=M C(q)$. Therefore, the firm will operate as long as $p \geq p^{\min \text { AVC }}$, which satisfies

$$
p^{\min \mathrm{AVC}}=M C\left(q^{\min \mathrm{AVC}}\right)=A V C\left(q^{\min \mathrm{AVC}}\right) .
$$

We have that

$$
M C(q)=c^{\prime}(q)=2 q
$$

while

$$
\begin{aligned}
A V C(q) & =\frac{c(q)-c(0)}{q} \\
& =\frac{q^{2}+20-4}{q} \\
& =\frac{q^{2}+16}{q}
\end{aligned}
$$

and so

$$
\begin{gathered}
M C\left(q^{\min \mathrm{AVC}}\right)=A V C\left(q^{\min \mathrm{AVC}}\right) \\
\Leftrightarrow 2 q^{\min \operatorname{AVC}}=\frac{\left(q^{\min A V C}\right)^{2}+16}{q^{\min A V C}} \\
\Leftrightarrow q^{\min \operatorname{AVC}}=4,
\end{gathered}
$$

and so

$$
\begin{aligned}
p^{\min \mathrm{AVC}} & =M C\left(q^{\min \mathrm{AVC}}\right)=A V C\left(q^{\min \mathrm{AVC}}\right) \\
& =2(4)=\frac{4^{2}+16}{4}=8
\end{aligned}
$$

The lowest price at which this firm will choose to operate rather than shut down is $p^{\min } \operatorname{AVC}=8$.
(b) Find the short-run supply of this firm.

Solution: The firm's supply function is therefore vertical along the vertical axis until $p=8$, and then jumps to $q=4$ and follows the graph of $p=2 q$, i.e. $q^{*}(p)=\frac{p}{2}$, forever beyond that:

$$
q^{*}(p)=\left\{\begin{array}{cc}
0 & \text { if } p<8 \\
\frac{p}{2} & \text { if } p \geq 8
\end{array}\right.
$$

