Algebra II Homework 1 - Due February, 27, 2024

- 1. Let $f(x) = x^3 + x + 1 \in \mathbb{F}_2[x]$.
 - (a) Show that f is irreducible over \mathbb{F}_2 .
 - (b) Let α be a root of f in some extension of \mathbb{F}_2 . Write the multiplicative inverse of $1 + \alpha$ of the form $a + b\alpha + c\alpha^2$ where $a, b, c \in \mathbb{F}_2$.
- 2. Let T be an indeterminate and let $K = \mathbb{Q}(T)$ be the field of rational functions in T with rational coefficients. Let $f(x) = x^2 T \in K[x]$.
 - (a) Show that f is irreducible over K.
 - (b) Let α be a root of f in some extension of K. Write the multiplicative inverse of $1 + \alpha$ of the form $a + b\alpha$ where $a, b \in K$.
- 3. Let $E = \mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$ and let $\alpha = \frac{\sqrt[3]{2}+3\sqrt{2}}{-\sqrt[3]{4}+7}$.
 - (a) Find the minimal polynomial of α over \mathbb{Q} .
 - (b) What is $[E : \mathbb{Q}(\alpha)]$?
 - (c) Find a basis of E over \mathbb{Q} . (You need to prove that the candidate you have found is indeed a basis.)
- 4. Let T be an indeterminate (over \mathbb{R}). Calculate $[\mathbb{R}(T) : \mathbb{R}(T + \frac{1}{T})]$.
- 5. Let E|k and F|k be two extensions where E, F are contained in a common field. Show that $[EF:k] \leq [E:k][F:k]$. When does the equality hold?
- 6. Let E|F be a field extension and let $\alpha \in E$ be algebraic over F of odd degree. Show that $F(\alpha) = F(\alpha^2)$.
- 7. Let $K|\mathbb{Q}$ be an extension of degree 2. Show that $K = \mathbb{Q}(\sqrt{d})$ for some square-free integer $d \neq 1$.