Algebra II
 Homework 1 - Due February, 27, 2024

1. Let $f(x)=x^{3}+x+1 \in \mathbb{F}_{2}[x]$.
(a) Show that f is irreducible over \mathbb{F}_{2}.
(b) Let α be a root of f in some extension of \mathbb{F}_{2}. Write the multiplicative inverse of $1+\alpha$ of the form $a+b \alpha+c \alpha^{2}$ where $a, b, c \in \mathbb{F}_{2}$.
2. Let T be an indeterminate and let $K=\mathbb{Q}(T)$ be the field of rational functions in T with rational coefficients. Let $f(x)=x^{2}-T \in K[x]$.
(a) Show that f is irreducible over K.
(b) Let α be a root of f in some extension of K. Write the multiplicative inverse of $1+\alpha$ of the form $a+b \alpha$ where $a, b \in K$.
3. Let $E=\mathbb{Q}(\sqrt[3]{2}, \sqrt{3})$ and let $\alpha=\frac{\sqrt[3]{2}+3 \sqrt{2}}{-\sqrt[3]{4}+7}$.
(a) Find the minimal polynomial of α over \mathbb{Q}.
(b) What is $[E: \mathbb{Q}(\alpha)]$?
(c) Find a basis of E over \mathbb{Q}. (You need to prove that the candidate you have found is indeed a basis.)
4. Let T be an indeterminate (over \mathbb{R}). Calculate $\left[\mathbb{R}(T): \mathbb{R}\left(T+\frac{1}{T}\right)\right]$.
5. Let $E \mid k$ and $F \mid k$ be two extensions where E, F are contained in a common field. Show that $[E F: k] \leq[E: k][F: k]$. When does the equality hold?
6. Let $E \mid F$ be a field extension and let $\alpha \in E$ be algebraic over F of odd degree. Show that $F(\alpha)=F\left(\alpha^{2}\right)$.
7. Let $K \mid \mathbb{Q}$ be an extension of degree 2 . Show that $K=\mathbb{Q}(\sqrt{d})$ for some square-free integer $d \neq 1$.
