DEFINABLE SETS IN MANN PAIRS

LOU VAN DEN DRIES AND AYHAN GÜNAYDIN

Abstract. Consider structures $\langle \Omega, k, \Gamma \rangle$ where Ω is an algebraically closed field of characteristic zero, k is a subfield, and Γ is a subgroup of the multiplicative group of Ω. Certain pairs (k, Γ) have been singled out as Mann pairs in [3]. We give new examples of such Mann pairs, and for a Mann pair (k, Γ) we axiomatize the first-order theory of $\langle \Omega, k, \Gamma \rangle$ in a cleaner way than in [3], and, as the main result of the paper, we characterize the subsets of Ω^n that are definable in $\langle \Omega, k, \Gamma \rangle$.

1. Introduction

This paper is a sequel to [3]. We let Ω be an algebraically closed (ambient) field, k a subfield of Ω, and Γ a subgroup of $\Omega \times$. Also m, n range over $\mathbb{N} = \{0, 1, 2, \ldots\}$ and for $a \in \Omega$ and $\vec{s} = (s_1, \ldots, s_n) \in \Omega^n$ we put $a\vec{s} := (as_1, \ldots, as_n) \in \Omega^n$. For $n \geq 1$ we set

$$\Gamma^{[n]} := \{ \gamma^n : \gamma \in \Gamma\}$$

(a subgroup of Γ).

Other notations are explained as needed.

Let $n \geq 2$ and $a_1, \ldots, a_n \in \Omega$. A nondegenerate solution of the equation

$$a_1x_1 + \cdots + a_nx_n = 0$$

is a tuple $\vec{s} = (s_1, \ldots, s_n) \in (\Omega^\times)^n$ such that $a_1s_1 + \cdots + a_ns_n = 0$ and $\sum_{i \in I} a_is_i \neq 0$ for all proper nonempty subsets I of $\{1, \ldots, n\}$; note that then $a_1, \ldots, a_n \neq 0$, and that $a\vec{s}$ for $a \in \Omega^\times$ is also a nondegenerate solution of the same equation, and so for most purposes we can normalize to $s_n = 1$.

Let $n \geq 2$ and define $\Gamma(k, n)$ to be the set of all $\vec{\gamma} = (\gamma_1, \ldots, \gamma_n) \in \Gamma^n$ such that $\gamma_n = 1$ and $\vec{\gamma}$ is a nondegenerate solution of some equation

$$a_1x_1 + \cdots + a_nx_n = 0$$

with $a_1, \ldots, a_n \in k$. Recall from [3] that (k, Γ) is a Mann pair if and only if $\Gamma(k, n)$ is finite for all $n \geq 2$.\(^1\) One example of a Mann pair is (\mathbb{Q}, U) within the ambient field \mathbb{C}, where U is the subgroup of \mathbb{C}^\times consisting of all the roots of unity (see [7] for a proof of this fact). Also, if Ω is of characteristic zero, k is algebraically closed, $k^\times \cap \Gamma = \{1\}$ and Γ is of finite rank (that is, Γ has a finitely generated subgroup Γ_0 such that Γ/Γ_0 is a torsion group), then (k, Γ) is a Mann pair; see Theorem 1.1 of [3].

\(^1\)This is not quite the definition of Mann pair in [3], but is equivalent to it.
Let \(n \geq 2 \) and \(a_1, \ldots, a_n \in k^x \). A solution \(\vec{s} = (s_1, \ldots, s_n) \in (\Omega^x)^n \) of
\[
(*) \quad a_1x + \cdots + a_nx_n = 0
\]
is said to be primitive over \(k \) if \((s_i)_{i \in I} \) is linearly independent over \(k \) for every nonempty proper subset \(I \) of \(\{1, \ldots, n\} \). So a primitive solution of \((*)\) over \(k \) is in particular a nondegenerate solution of \((*)\).

For \(n \geq 2 \), let \(\Gamma(k, n)_{pr} \) be the set of \(\vec{\gamma} \in \Gamma^n \) such that \(\gamma_n = 1 \) and \(\vec{\gamma} \) is a primitive solution of \((*)\) over \(k \) for some \(a_1, \ldots, a_n \in k^x \); in particular, \(\Gamma(k, n)_{pr} \subseteq \Gamma(k, n) \). In Section 3 we axiomatize the first-order theory of \((\Omega, k, \Gamma)\) when \((k, \Gamma)\) is a Mann pair. More precisely, let \(L \) be the language of rings augmented by two distinct unary relation symbols, and let \(T \) be the \(L\)-theory whose models are the structures \((\Omega, k, \Gamma)\).

Theorem 1.1. Suppose \(k \) is infinite, \((k, \Gamma)\) is a Mann pair with \([\Theta : k] > 2\), and \((\Theta', k', \Gamma')\) is a model of \(T \) with \((\Theta, k, \Gamma)\) as a substructure such that \([\Theta' : k'] > 2\), and \(\Gamma'(k', n)_{pr} = \Gamma(k, n)_{pr} \) for every \(n \geq 2 \). Then
\[
(\Theta, k, \Gamma) \equiv_{k, \Gamma} (\Theta, k, \Gamma) \iff k \preceq k' \text{ and } \Gamma \preceq \Gamma'.
\]
This improves on related results from [3] in not involving a choice of finite subset of \(\Gamma^n \) for \(n = 2, 3, \ldots \), nor a choice of basis for the \(k\)-linear spaces attached to the elements of these finite sets.

For Mann pairs \((k, \Gamma)\) the subsets of \(k^m \times \Gamma^m \) that are definable in \((\Omega, k, \Gamma)\) are determined in Proposition 7.2 of [3], but in the present paper we wish to describe more generally the subsets of \(\Omega^m \) definable in \((\Omega, k, \Gamma)\):

Theorem 1.2. Suppose \((k, \Gamma)\) is a Mann pair, \(k \) is algebraically closed, \(k \not= \Omega \), and \(\Gamma/\Gamma[p] \) is finite for each prime \(p \). Then a subset of \(\Omega^m \) is definable in \((\Omega, k, \Gamma)\) if and only if it is a boolean combination of subsets of \(\Omega^m \) of the form
\[
\bigcup_{\vec{a} \in k^d} \bigcup_{\vec{\gamma} \in \Gamma^e} X(\vec{a}, \vec{\gamma}), \quad (d, e \in \mathbb{N})
\]
where \(X \subseteq \Omega^{d+e+m} \) is definable in the field \(\Omega \) and \(X(\vec{a}, \vec{\gamma}) \) is the set of all \(\vec{s} \in \Omega^m \) such that \((\vec{a}, \vec{\gamma}, \vec{s}) \in X \).

In other words, \((\Omega, k, \Gamma)\) eliminates quantifiers down to existential formulas with quantifiers ranging only over \(k \) and \(\Gamma \).

Acknowledgement. We thank the Fields Institute for providing us with good working conditions during the preparation of this paper.

2. Some new Mann pairs

We indicate here some natural Mann pairs that we noticed recently. The first is an “easy” Mann pair in the sense of Section 2.2 of [3], and originates from the following classical result due to E. Borel [1], p. 387:

Let \(f_1, \ldots, f_n \) with \(n \geq 1 \) be entire functions of one complex variable \(z \) that are linearly independent over \(\mathbb{C} \), and suppose each \(f_j \) as well as \(f_1 + \cdots + f_n \)
has only finitely many zeros. Then there is an entire function \(h \) and there are polynomials \(p_j \in \mathbb{C}[z] \) such that \(f_j = p_j e^h \) for \(j = 1, \ldots, n \).

Consider now inside the field of meromorphic functions on the complex plane \(\mathbb{C} \) the subfield \(k = \mathbb{C}(z) \) of rational functions, and the multiplicative group \(\Gamma := \{ e^h : h \text{ is entire and } h(0) = 0 \} \). It is easy to see that Borel’s theorem is equivalent to the proposition that \((k, \Gamma) \) is an easy Mann pair. The condition \(h(0) = 0 \) is just a normalization to arrange that \(\Gamma \) is torsion-free and \(k^\times \cap \Gamma = \{ 1 \} \).

Next, let \(k \) be any field of characteristic 0. Then the generalized power series field \(K := k((t^Q)) \) in the variable \(t \) comes with a valuation \(v : K^\times \to \mathbb{Q} \), and a derivation \(d/dt \) on \(K \) with constant field \(k \). Let

\[
\mathcal{O} := \{ f \in K : vf \geq 0 \}, \quad \mathfrak{m} := \{ f \in K : vf > 0 \}
\]

be the valuation ring of \(v \) and its maximal ideal. The exponential function

\[
f \mapsto \exp(f) := \sum_{n=0}^{\infty} \frac{f^n}{n!} : \mathfrak{m} \to 1 + \mathfrak{m},
\]

is an isomorphism of the additive group \(\mathfrak{m} \) onto the subgroup \(1 + \mathfrak{m} \) of \(K^\times \), and \(\exp(f)’ = f’ \exp(f) \) for \(f \in \mathfrak{m} \), with \(g’ := dg/dt \).

Proposition 2.1. Let \(L \) be a finite dimensional subspace of the \(k \)-linear space \(\mathfrak{m} \), and put \(\Gamma := \exp L \). Then \((k, \Gamma) \) is a Mann pair.

Proof. We can basically repeat the proof at the end of Section 6 of [3], which is based on Corollary 2.7 in [5]: assume without loss that \(k \) is algebraically closed and extend the differential field \(K \) (with derivation \(d/dt \)) to a differentially closed field \(\Omega \) with constant field \(k \). Consider the logarithmic-derivative map \(\text{ld} : \Omega^\times \to \Omega, \text{ld}(x) := x’/x \). Take \(r \in \mathbb{N} \) and \(f_1, \ldots, f_r \in \mathfrak{m} \) with \(L = k \cdot f_1 + \cdots + k \cdot f_r \) and put \(\gamma_i := \exp f_i \). Then

\[
\text{ld}(\Gamma) = k \cdot f_1’ + \cdots + k \cdot f_r’ = k \cdot \text{ld}(\gamma_1) + \cdots + k \cdot \text{ld}(\gamma_r),
\]

and from here on the proof at the end of Section 6 of [3] goes through word for word.

\(\square \)

This proposition and its proof go through for some other differential fields with a (partial) exponential function, like the field \(\mathbb{R}[[[x]]] \) of transseries.

3. Axiomatizing \((\Omega, k, \Gamma)\)

Inspired by Section 6 of [2] we first show that the solutions in \(\Gamma \) of equations

\[
a_1 x_1 + \cdots + a_n x_n = 0, \quad (a_1, \ldots, a_n \in k^\times)
\]

are generated in a certain way by its primitive solutions in \(\Gamma \).
3.1. **Linear considerations.** Below, \(\vec{s} = (s_1, \ldots, s_n) \in (\Omega^x)^n, n \geq 2, \) and \(I \subseteq \{1, \ldots, n\} \). We say that \(I \) is \(\vec{s} \)-minimal over \(k \) if the tuple \((s_i)_{i \in I}\) is linearly dependent over \(k \) (hence \(|I| \geq 2\)), and for each proper subset \(J \) of \(I \) the tuple \((s_j)_{j \in J}\) is linearly independent over \(k \).

Suppose \(I \) is \(\vec{s} \)-minimal over \(k \). Then there is a tuple \((a_i)_{i \in I}\) with all \(a_i \in k \) and some \(a_i \neq 0 \) such that \(\sum_{i \in I} a_i s_i = 0 \); such a tuple \((a_i)\) is unique up to multiplication by a nonzero scalar from \(k \) and has \(a_i \neq 0 \) for all \(i \).

Define \(V(\vec{s}) \) to be the \(k \)-linear subspace of \(k^n \) consisting of all \(\vec{a} = (a_1, \ldots, a_n) \) such that \(a_1 s_1 + \cdots + a_n s_n = 0 \). If \(I \) is \(\vec{s} \)-minimal over \(k \), then \(V((s_i)_{i \in I}) \) is a one-dimensional subspace of \(k^I \). For each \(I \) that is \(\vec{s} \)-minimal over \(k \), fix an element \(a'_I \) of \(k^n \) such that \((a'_i)_{i \in I}\) generates \(V((s_i)_{i \in I}) \) and \(a'_j = 0 \) for \(j \notin I \). The next two lemmas are reformulations of Lemmas 4 and 5 in [2].

Lemma 3.1. The \(k \)-linear space \(V(\vec{s}) \) is generated by the \(a'_I \) for which \(I \) is \(\vec{s} \)-minimal over \(k \).

For \(J \subseteq \{1, \ldots, n\} \) we put \(J^c := \{1, \ldots, n\} \setminus J \).

Lemma 3.2. Let \(\vec{a} \in V(\vec{s}), J \subseteq \{1, \ldots, n\}, \) and \(\sum_{j \in J} a_j s_j \neq 0 \). Then there is an \(I \) that is \(\vec{s} \)-minimal over \(k \) and meets both \(J \) and \(J^c \).

The direction \((1) \Rightarrow (2)\) of the next lemma is essentially Lemma 6 of [2], but we also need \((2) \Rightarrow (1)\), so we give a complete proof.

Lemma 3.3. Assume \(k \) is infinite. Then the following are equivalent:

1. \(\vec{s} \) is a nondegenerate solution of some equation \(a_1 x_1 + \cdots + a_n x_n = 0 \) with \(a_1, \ldots, a_n \in k \);
2. \(\{1, \ldots, n\} \) can be covered by subsets \(I_1, \ldots, I_m \) that are \(\vec{s} \)-minimal over \(k \), such that for every nonempty proper subset \(J \) of \(\{1, \ldots, n\} \) some \(I_p \) with \(p \in \{1, \ldots, m\} \) meets both \(J \) and \(J^c \).

Proof. To show that \((1) \) implies \((2)\), let \(a_1, \ldots, a_n \in k^x \) be such that \(\vec{s} \) is a nondegenerate solution of \(a_1 x_1 + \cdots + a_n x_n = 0 \). Take an \(I_1 \subseteq \{1, \ldots, n\} \) that is \(\vec{s} \)-minimal over \(k \). Note that if \(I_1 = \{1, \ldots, n\} \), then \((2)\) holds with \(m = 1 \). Suppose \(I_1, \ldots, I_m \subseteq \{1, \ldots, n\} \) with \(m \geq 1 \) are \(\vec{s} \)-minimal over \(k \), we have a strictly increasing chain

\[
I_1 \subseteq I_1 \cup I_2 \subseteq \cdots \subseteq I_1 \cup \cdots \cup I_m,
\]

and for every nonempty proper subset \(J \) of \(I := I_1 \cup \cdots \cup I_m \) some \(I_p \) with \(p \in \{1, \ldots, m\} \) meets both \(J \) and \(J^c \). If \(I = \{1, \ldots, n\} \), then \((2)\) holds. Assume \(I \neq \{1, \ldots, n\} \). Then \(\sum_{i \in I} a_i s_i \neq 0 \), so by Lemma 3.2 we have an \(I_{m+1} \subseteq \{1, \ldots, n\} \) that is \(\vec{s} \)-minimal over \(k \) and meets both \(I \) and \(I^c \).

It follows easily that then for every nonempty proper subset \(J \) of \(I \cup I_{m+1} \) some \(I_p \) with \(p \in \{1, \ldots, m+1\} \) meets both \(J \) and \(J^c \). So in a finite number of steps we obtain a covering as in \((2)\).
To prove the converse, assume (2). Take I_1, \ldots, I_m as in (2), and for $p = 1, \ldots, m$, take $a_{pj} \in k$, $j = 1, \ldots, n$, such that
\[
\sum_{j=1}^{n} a_{pj}s_j = 0, \quad a_{pj} = 0 \text{ for } j \notin I_p, \quad a_{pj} \neq 0 \text{ for } j \in I_p.
\]
With $x_1, \ldots, x_m \in k$ we have
\[
0 = x_1 \sum_{j=1}^{n} a_{1j}s_j + \cdots + x_m \sum_{j} a_{mj}s_j = (\sum_{p=1}^{m} a_{p1}x_1)s_1 + \cdots + (\sum_{p=1}^{m} a_{pn}x_n)s_n
\]
Thus it suffices to find $x_1, \ldots, x_m \in k$ such that for each nonempty proper subset J of $\{1, \ldots, n\}$ we have $\sum_{j \in J}(\sum_{p=1}^{m} a_{pj}x_i)s_j \neq 0$, that is,
\[
(\sum_{j \in J} a_{1j}s_j)x_1 + \cdots + (\sum_{j \in J} a_{mj}s_j)x_m \neq 0.
\]
For each nonempty proper subset J of $\{1, \ldots, n\}$ we take $p \in \{1, \ldots, m\}$ such that I_p meets both J and J^c, and so $\sum_{j \in J} a_{pj}s_j \neq 0$. Since k is infinite, this yields $x_1, \ldots, x_m \in k$ as desired. \square

Lemma 3.3 says basically how $\Gamma(k, n)$ is determined by the sets $\Gamma(k, m)^{pr}$ with $m = 2, \ldots, n$. Here are some consequences:

Corollary 3.4. (k, Γ) is a Mann pair iff $\Gamma(k, n)^{pr}$ is finite for all $n \geq 2$.

Proof. Let $n \geq 2$ be given and assume $\Gamma(k, m)^{pr}$ is finite for $m = 2, \ldots, n$. We shall derive that $\Gamma(k, n)$ is finite. Let $\gamma \in \Gamma(k, n)$. The proof of the direction (1) \Rightarrow (2) of Lemma 3.3 does not use that k is infinite, so we have a covering of $\{1, \ldots, n\}$ by subsets I_1, \ldots, I_m that are γ-minimal over k, such that for every nonempty proper subset J of $\{1, \ldots, n\}$ some I_p meets both J and J^c. By renumbering the I’s we arrange that $n \in I_1$, and since $\gamma_n = 1$ this leaves only finitely many possibilities for $(\gamma_i)_{i \in I_1}$. If $I_1 = \{1, \ldots, n\}$ we are done. Otherwise, we can assume that I_2 meets both I_1 and I_1^c. Taking $i_1 \in I_1 \cap I_2$ we have only finitely many possibilities for γ_{i_1}, and so there are only finitely many possibilities for $(\gamma_i)_{i \in I_2}$ and thus for $(\gamma_i)_{i \in I_1 \cup I_2}$. If $I_1 \cup I_2 = \{1, \ldots, n\}$ we are done, and otherwise we continue as above. \square

Corollary 3.5. Suppose k is infinite and $K \supseteq k$ is a subfield of Ω such that $\Gamma(k, n)^{pr} = \Gamma(K, n)^{pr}$ for all $n \geq 2$. Then $\Gamma(k, n) = \Gamma(K, n)$ for all $n \geq 2$.

Proof. Let $n \geq 2$ and $\gamma \in \Gamma(k, n)$. Then the direction (1) \Rightarrow (2) of Lemma 3.3 yields a covering of $\{1, \ldots, n\}$ by subsets I_1, \ldots, I_m that are γ-minimal over k, such that for every nonempty proper subset J of $\{1, \ldots, n\}$ some I_p with $p \in \{1, \ldots, m\}$ meets both J and J^c. Then I_1, \ldots, I_m are also γ-minimal over K, so by the direction (2) \Rightarrow (1) of Lemma 3.3 we have $\gamma \in \Gamma(K, n)$. \square
This gives an improvement of (4) in Section 5 of [3] for infinite \(k \):

Corollary 3.6. Suppose \(k \) is infinite and \(K \supseteq k \) is subfield of \(\Omega \) that is linearly disjoint from \(k(\Gamma) \) over \(k \). Then \(\Gamma(k, n) = \Gamma(K, n) \) for all \(n \geq 2 \).

Proof. The linear disjointness assumption yields \(\Gamma(k, n) = \Gamma(K, n) \) for all \(n \geq 2 \). Now use Corollary 3.5. \(\square \)

3.2. Elementary classification.

Consider a model \((\Omega_0, k_0, \Gamma_0)\) of \(T \) such that \(k_0 \) is infinite and \((k_0, \Gamma_0)\) is a Mann pair. We now have Theorem 1.1 in the following stronger form.

Theorem 3.7. Let \((\Omega_1, k_1, \Gamma_1)\) and \((\Omega_2, k_2, \Gamma_2)\) be models of \(T \) such that

1. \(|\Omega_1 : k_1| > 2 \) and \(|\Omega_2 : k_2| > 2 \);
2. \((\Omega_0, k_0, \Gamma_0) \subseteq (\Omega_1, k_1, \Gamma_1) \) and \((\Omega_0, k_0, \Gamma_0) \subseteq (\Omega_2, k_2, \Gamma_2)\);
3. \(\Gamma_1(k_1, n)pr = \Gamma_2(k_2, n)pr = \Gamma_0(k_0, n)pr \) for all \(n \geq 2 \).

Then: \((\Omega_1, k_1, \Gamma_1) \equiv_{k_0, \Gamma_0} (\Omega_2, k_2, \Gamma_2) \iff k_1 \equiv_{k_0} k_2 \) and \(\Gamma_1 \equiv_{\Gamma_0} \Gamma_2 \).

Proof. It follows easily from Lemma 3.1 and Corollary 3.5 that \((\Omega_i, k_i, \Gamma_i)\) satisfies the Mann axioms of \((\Omega_0, k_0, \Gamma_0)\) for \(i = 1, 2 \), in the sense of [3]. It remains to use Theorem 8.4 in [3]. \(\square \)

For algebraically closed \(k_i \) this gives:

Corollary 3.8. Let \((\Omega_1, k_1, \Gamma_1)\) and \((\Omega_2, k_2, \Gamma_2)\) be models of \(T \) such that

1. \(k_1 \) and \(k_2 \) are algebraically closed, \(k_1 \neq \Omega_1 \), \(k_2 \neq \Omega_2 \);
2. \((\Omega_0, k_0, \Gamma_0) \subseteq (\Omega_1, k_1, \Gamma_1) \) and \((\Omega_0, k_0, \Gamma_0) \subseteq (\Omega_2, k_2, \Gamma_2)\);
3. \(\Gamma_1(k_1, n)pr = \Gamma_2(k_2, n)pr = \Gamma_0(k_0, n)pr \) for every \(n \geq 2 \).

Then: \((\Omega_1, k_1, \Gamma_1) \equiv_{k_0, \Gamma_0} (\Omega_2, k_2, \Gamma_2) \iff \Gamma_1 \equiv_{\Gamma_0} \Gamma_2 \).

4. Definable sets in \((\Omega, k, \Gamma)\)

A back-and-forth system. To define a back-and-forth system adequate for proving Theorem 1.2 is not so obvious, and we managed to do it only after much trial-and-error; see Lemmas 4.1, 4.2, 4.3. Throughout this subsection we fix a model \((\Omega_0, k_0, \Gamma_0)\) of \(T \) such that \(k_0 \) is infinite and \((k_0, \Gamma_0)\) is a Mann pair.

Lemma 4.1. Let \((\Omega, k, \Gamma)\) be a model of \(T \) such that \((\Omega_0, k_0, \Gamma_0) \subseteq (\Omega, k, \Gamma)\) and \(\Gamma(k, n)pr = \Gamma_0(k_0, n)pr \) for every \(n \geq 2 \). Then

1. \(k \) and \(k_0(\Gamma) \) are linearly disjoint over \(k_0 \);
2. if \(k|k_0 \) is regular and \(\Gamma|\Gamma_0 \) is pure, then \(k(\Gamma)|k_0(\Gamma_0) \) is regular.

Proof. Let \(\gamma_1, \ldots, \gamma_n \in \Gamma \) be linearly dependent over \(k \); to get (1) it is enough to show that then they are linearly dependent over \(k_0 \). We can reduce to the case that \(n \geq 2 \) and \((\gamma_i)_{i \in I} \) is linearly independent over \(k \) for all nonempty proper subsets \(I \) of \(\{1, \ldots, n\} \). Then by Corollary 3.5 we have

\[
(\gamma_1, \ldots, \gamma_n) = \gamma \gamma_0, \quad \gamma \in \Gamma, \quad \gamma_0 \in \Gamma_0(k_0, n)pr,
\]
so \(\gamma_1, \ldots, \gamma_n \) are indeed linearly dependent over \(k_0 \).

Suppose now that \(k|k_0 \) is regular and \(\Gamma|\Gamma_0 \) is pure. Then by (1) and Theorem 4.13 from [6] the extension \(k(\Gamma)|k_0(\Gamma) \) is regular, and by Lemma 5.13 of [4] the extension \(k_0(\Gamma)|k_0(\Gamma_0) \) is regular. Hence \(k(\Gamma)|k_0(\Gamma_0) \) is regular, by Proposition 4.11(b) of Chapter VIII of [6].

Fix a cardinal \(\kappa > |\Omega_0| \), and let \((\Omega, k, \Gamma)\) be a \(\kappa \)-saturated model of \(T \) such that \((\Omega_0, k_0, \Gamma_0) \subseteq (\Omega, k, \Gamma) \) and \(\Gamma(k, n)^{pr} = \Gamma_0(k_0, n)^{pr} \) for every \(n \geq 2 \). Define \(\text{Sub}(\Omega, k, \Gamma) \) to be the collection of all models \((\Omega', k', \Gamma')\) of \(T \) such that:

(i) \(\Omega_0 \subseteq \Omega' \subseteq \Omega \) (as fields) and \(|\Omega'| < \kappa \);
(ii) \(k_0 \subseteq k' \subseteq k \) (as fields) and the extension \(k|k' \) is regular;
(iii) \(\Gamma_0 \subseteq \Gamma' \subseteq \Gamma \) (as groups), and the extension \(\Gamma|\Gamma' \) is pure;
(iv) \(k(\Gamma) \) and \(\Omega' \) are free over \(k'(\Gamma') \).

So \((\Omega', k', \Gamma') \in \text{Sub}(\Omega, k, \Gamma) \) yields a diagram of field inclusions:

\[
\begin{array}{ccc}
\Omega & \quad k(\Gamma) & \quad \Omega' \\
& k & \quad k'(\Gamma') \\
\end{array}
\]

Lemma 4.2. Let \((\Omega', k', \Gamma') \in \text{Sub}(\Omega, k, \Gamma) \). Then

1. \(k'(\Gamma') \) and \(\Omega' \) are linearly disjoint over \(k'(\Gamma') \),
2. \(k \) and \(\Omega' \) are linearly disjoint over \(k' \),
3. \(k(\Gamma') \cap \Gamma = \Gamma' \),
4. \((\Omega', k', \Gamma') \) is a substructure of \((\Omega, k, \Gamma)\).

Proof. From the linear disjointness of \(k \) and \(k_0(\Gamma) \) over \(k_0 \)—item (1) of Lemma 4.1—we obtain the linear disjointness of \(k \) and \(k'(\Gamma') \) over \(k' \). Hence \(k(\Gamma')|k'(\Gamma') \) is regular. We then argue as in the proof of (2) in Lemma 4.1, with \(k' \) instead of \(k_0 \), that \(k'(\Gamma)|k'(\Gamma') \) is regular, and so \(k(\Gamma)|k'(\Gamma') \) is regular. Then (1) follows from condition (iv) above and Theorem 4.12 on page 367 of [6]. This also gives (2).

For (3), let \(\gamma \in k(\Gamma') \cap \Gamma', \) so \(\gamma = \sum a_1 \alpha_1 + \cdots + a_m \alpha_m + b_1 \beta_1 + \cdots + b_n \beta_n \) with \(a_1, \ldots, a_m, b_1, \ldots, b_n \) from \(k \), and \(\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_n \) from \(\Gamma' \), and \(b_1 \beta_1 + \cdots + b_n \beta_n \neq 0 \). Taking such a representation of \(\gamma \) with minimal \(m + n \), we have \(m, n \geq 1 \), and using Corollary 3.5, this gives

\[
(\alpha_1, \ldots, \alpha_m, \beta_1 \gamma, \ldots, \beta_n \gamma) \in \Gamma \bar{\gamma}_0, \quad \bar{\gamma}_0 \in \Gamma_0(k_0, m + n).
\]
In particular, \(\frac{\partial \gamma}{\partial n} \in \Gamma_0 \subseteq \Gamma' \), so \(\gamma \in \Gamma' \).

As to (4), by (2) we have \(\Omega' \cap k = k' \), so if \(\gamma \in \Omega' \cap \Gamma \), then \(\gamma \in k'(\Gamma') \) by (1), and hence \(\gamma \in \Gamma' \) by (3).

Next, for \(i = 1, 2 \), let \((\Omega_i, k_i, \Gamma_i) \) be a \(\kappa \)-saturated model of \(T \) such that \((\Omega_0, k_0, \Gamma_0) \subseteq (\Omega_i, k_i, \Gamma_i), [\Omega_i : k_i] > 2 \), and \(\Gamma_i(k_i, n)_{\text{pr}} = \Gamma_0(k_0, n)_{\text{pr}} \) for every \(n \geq 2 \), and put \(\text{Sub}_i := \text{Sub}(\Omega_i, k_i, \Gamma_i) \).

Let \(\mathcal{I} \) be the set of isomorphisms

\[\iota : (\Omega'_1, k'_1, \Gamma'_1) \rightarrow (\Omega'_2, k'_2, \Gamma'_2), \quad (\Omega'_i, k'_i, \Gamma'_i) \in \text{Sub}_i \text{ for } i = 1, 2, \]

that are the identity on \(k_0 \) and on \(\Gamma_0 \), such that \(\iota|k'_i \) is a partial elementary map from \(k_1 \) to \(k_2 \), and \(\iota|\Gamma'_i \) is a partial elementary map from \(\Gamma_1 \) to \(\Gamma_2 \); we do not require that \(\iota \) is the identity on \(\Omega_0 \).

Lemma 4.3. \(\mathcal{I} \) is a (possibly empty) back-and-forth system.

Proof. Let \(\iota : (\Omega'_1, k'_1, \Gamma'_1) \rightarrow (\Omega'_2, k'_2, \Gamma'_2) \) be in \(\mathcal{I} \), and \(r \in \Omega_1 \setminus \Omega_1' \); by symmetry it is enough to show that then \(\iota \) extends to an isomorphism in \(\mathcal{I} \) that has \(r \) in its domain.

First, consider the case that \(r \in k_1 \). Then we take a field \(k''_1 \leq k_1 \) such that \(k'_1(r) \subseteq k''_1 \) and \([k''_1 : k'_1] < \kappa \). Using saturation we extend \(\iota|k'_1 \) to a field isomorphism \(f : k''_1 \rightarrow k''_2 \leq k_2 \) that is a partial elementary map between \(k_1 \) and \(k_2 \). It is clear that \(k''_1(k''_1(r)) \) is regular, and that \(k''_1(k''_1(r)) \) and \(k''_2(k''_1(r)) \) are free over \(k''_1(\Gamma''_1) \), where \(\Omega''_i := (\Omega'_i(k''_i))^{\text{ac}} \) and \(i \in \{1, 2\} \). So \((\Omega''_1, k''_1, \Gamma''_1) \in \text{Sub}_i \) for \(i = 1, 2 \). Then by (2) of Lemma 4.2 we have a common extension of \(\iota \) and \(f \) to an isomorphism

\[(\Omega'_1, k'_1, \Gamma'_1) \rightarrow (\Omega''_1, k''_1, \Gamma''_1) \]

in \(\mathcal{I} \); it has \(r \) in its domain.

Next, assume that \(r \in \Gamma_1 \). Then we take a group \(\Gamma''_1 \leq \Gamma_1 \) such that \(r^\mathcal{I}\Gamma''_1 \subseteq \Gamma''_1 \) and \([\Gamma''_1 : \Gamma_1] < \kappa \). Using saturation we extend \(\iota|\Gamma_1' \) to a group isomorphism \(g : \Gamma''_1 \rightarrow \Gamma''_2 \leq \Gamma_2 \) that is a partial elementary map between \(\Gamma_1 \) and \(\Gamma_2 \). It is clear that \(\Gamma_i(\Gamma_i') \) is pure, and that \(k_i(\Gamma_i) \) and \(\Omega''_i \) are free over \(k'_i(\Gamma''_i) \), where \(\Omega''_i := (\Omega'_i(\Gamma''_i))^{\text{ac}} \) and \(i \in \{1, 2\} \). So \((\Omega''_i, k''_i, \Gamma''_i) \in \text{Sub}_i \) for \(i = 1, 2 \). Also \(\Gamma_i(k_i, n) = \Gamma_0(k_0, n) \), for \(n > 1 \) and \(i = 1, 2 \), and thus we have a field isomorphism \(h : k'_i(\Gamma''_i) \rightarrow k''_i(\Gamma''_i) \) that extends \(\iota|k'_i \) and \(g \).

Then by (1) of Lemma 4.2 this gives a common extension of \(\iota \) and \(h \) to an isomorphism

\[(\Omega'_1, k'_1, \Gamma'_1) \rightarrow (\Omega''_2, k''_2, \Gamma''_2) \]

in \(\mathcal{I} \); it has \(r \) in its domain.

If \(r \in \Omega'_i(k_1 \cup \Gamma_1)^{\text{ac}} \), then we can take a finite number of steps of the two types above to extend \(\iota \) to an element of \(\mathcal{I} \) with \(r \) in its domain.

Finally, suppose that \(r \notin \Omega'_i(k_1 \cup \Gamma_1)^{\text{ac}} \). By saturation and the smallness assumption \([\Omega_2 : k_2] > 2\) we can take \(s \in \Omega_2 \) with \(s \notin \Omega'_2(k_2 \cup \Gamma_2)^{\text{ac}} \). With

\[\Omega'_i := \Omega'_i(\gamma)^{\text{ac}}, \quad \Omega''_2 := \Omega'_2(s)^{\text{ac}}, \]

we can take a sequence of isomorphisms

\[(\Omega'_i, k'_i, \Gamma'_i) \rightarrow (\Omega''_i, k''_i, \Gamma''_i) \]

in \(\mathcal{I} \); it has \(r \) in its domain.
it is clear that \((\Omega'', k'_i, \Gamma''_i) \in \text{Sub}_t\) for \(i = 1, 2\). We can extend \(t\) to a field isomorphism \(\Omega''_1 \rightarrow \Omega''_2\) that sends \(r\) to \(s\), and this gives an isomorphism
\[
(\Omega''_{1, k'_1, \Gamma''_1}) \rightarrow (\Omega''_{2, k'_2, \Gamma''_2})
\]
in \(I\) with \(r\) in its domain.

\[\square\]

Corollary 4.4. Suppose that \((\Omega_0, k_0, \Gamma_0) \subseteq (\Omega, k, \Gamma) \models T\) and \([\Omega_0 : k_0] > 2\). Then \((\Omega_0, k_0, \Gamma_0) \preceq (\Omega, k, \Gamma)\) if and only if (1) – (4) below are satisfied:

1. \([\Omega : k] > 2\);
2. \(\Gamma(k, n)^{pr} = \Gamma_0(k_0, n)^{pr}\) for every \(n \geq 2\);
3. \(k_0 \preceq k\) and \(\Gamma_0 \preceq \Gamma\);
4. \(k(\Gamma)\) and \(\Omega_0\) are free over \(k_0(\Gamma_0)\).

Proof. It is easy to check that if \((\Omega_0, k_0, \Gamma_0) \preceq (\Omega, k, \Gamma)\), then (1)–(4) hold. For the converse, assume (1)–(4). By passing to an elementary extension of \((\Omega, k, \Gamma)\) we arrange that \((\Omega, k, \Gamma)\) is \(\kappa\)-saturated. Put
\[
(\Omega_1, k_1, \Gamma_1) := (\Omega, k, \Gamma)
\]
and let \((\Omega_2, k_2, \Gamma_2)\) be a \(\kappa\)-saturated elementary extension of \((\Omega_0, k_0, \Gamma_0)\). Then \((\Omega_0, k_0, \Gamma_0) \in \text{Sub}(\Omega_1, k_1, \Gamma_1)\) for \(i = 1, 2\). Let \(I\) be the back-and-forth system considered in the previous lemma. Then the identity map on \((\Omega_0, k_0, \Gamma_0)\) belongs to \(I\), and so \((\Omega_1, k_1, \Gamma_1)\) and \((\Omega_2, k_2, \Gamma_2)\) are elementarily equivalent over \(\Omega_0\). Thus \((\Omega_0, k_0, \Gamma_0) \preceq (\Omega, k, \Gamma)\). \[\square\]

Definable Sets. We now specify the two unary relation symbols of \(L\) to be \(U\) and \(V\), to be interpreted in a model of \(T\) as the underlying set of the distinguished subfield and of the distinguished multiplicative group, respectively. Let a model \((\Omega, k, \Gamma)\) of \(T\) be given and let \(x = (x_1, \ldots, x_m)\) be a tuple of distinct variables. Call a subset of \(\Omega^m\) special if it is defined in \((\Omega, k, \Gamma)\) by a special formula in \(x = (x_1, \ldots, x_m)\), that is, a formula
\[
\exists y \exists z (U(y) \land V(z) \land \phi(x, y, z)),
\]
where \(x_1, \ldots, x_m, y_1, \ldots, y_s, z_1, \ldots, z_t\) are distinct variables, \(y = (y_1, \ldots, y_s)\), \(z = (z_1, \ldots, z_t)\) and \(\phi(x, y, z)\) is a quantifier-free formula in the language of rings augmented by names for the elements of \(\Omega\), and where \(U(y)\) and \(V(z)\) abbreviate \(U(y_1) \land \cdots \land U(y_s)\) and \(V(z_1) \land \cdots \land V(z_t)\), respectively.

Now we are ready to prove Theorem 1.2, which we first reformulate using the above terminology.

Theorem 4.5. Let \((\Omega, k, \Gamma)\) be a model of \(T\) such that \(k\) is an algebraically closed field, \(k \neq \Omega\), \((k, \Gamma)\) is a Mann pair, and \(\Gamma/\Gamma^{[p]}\) is finite for each \(p\). Then the subsets of \(\Omega^m\) definable in \((\Omega, k, \Gamma)\) are exactly the boolean combinations in \(\Omega^m\) of special subsets of \(\Omega^m\).

Proof. We take \(\kappa := \aleph_1\) and may assume that \((\Omega, k, \Gamma)\) is \(\kappa\)-saturated. Let \((\Omega'_0, k_0, \Gamma_0)\) be a countable elementary substructure of \((\Omega, k, \Gamma)\), and let \(\Omega_0\) be the algebraic closure of \(k_0(\Gamma_0)\) in \(\Omega'_0\). Then \((\Omega_0, k_0, \Gamma_0) \subseteq (\Omega, k, \Gamma)\),...
\((k_0, \Gamma_0)\) is a Mann pair, and \(\Gamma(k, n)^{pr} = \Gamma_0(k_0, n)^{pr}\) for every \(n \geq 1\). Let \(\vec{r} = (r_1, \ldots, r_m)\) and \(\vec{s} = (s_1, \ldots, s_m)\) be two tuples from \(\Omega^m\) that satisfy the same special formulas in \(x\) using only names for elements of \(A := k_0 \cup \Gamma_0\); it suffices to show that then they realize the same type in \((\Omega, k, \Gamma)\) over \(A\).

For \(i = 1, 2\), put \((\Omega_i, k_i, \Gamma_i) := (\Omega, k, \Gamma)\). Hence all the structures in \(\text{Sub}(\Omega_i, k_i, \Gamma_i)\) are countable. Set \(\mathcal{I}\) to be the back-and-forth system of Lemma 4.3; it is enough to construct an isomorphism in this system that takes \(\vec{r}\) to \(\vec{s}\).

Let \(d\) be the transcendence degree of \(k(\Gamma)(\vec{r})\) over \(k(\Gamma)\). We can assume that \(r_1, \ldots, r_d\) are algebraically independent over \(k(\Gamma)\). As in the proof of Theorem 3.8 in [4] it follows that \(s_1, \ldots, s_d\) are algebraically independent over \(k(\Gamma)\), and \(s_{d+1}, \ldots, s_m\) are algebraic over \(k(\Gamma)(s_1, \ldots, s_d)\).

Take some countable \((\Omega', k', \Gamma') \preceq (\Omega, k, \Gamma)\) such that \(\Omega' \supseteq \Omega_0\) and \(k'(\Gamma')(\vec{r})\) has transcendence degree \(d\) over \(k'(\Gamma')\). In particular, \((\Omega', k', \Gamma') \in \text{Sub}(\Omega, k, \Gamma)\). Let \(a = (a_0, a_1, a_2, \ldots)\) be an enumeration of \(k'\), let \(g = (g_0, g_1, g_2, \ldots)\) be an enumeration of \(\Gamma'\), and let \(y_0, y_1, y_2, \ldots\) be distinct variables, also distinct from \(x_1, \ldots, x_m\), and put

\[
y = (y_0, y_1, y_2, \ldots), \quad z = (z_0, z_1, z_2, \ldots).
\]

Suppose \(\psi_1(y), \ldots, \psi_k(y)\) are quantifier-free formulas in the language of rings augmented by names for the elements of \(k_0\), and \(\theta_1(z), \ldots, \theta_k(z)\) are quantifier-free formulas in the language of groups augmented by names for the elements of \(\Gamma_0\), and \(\phi_1(x, y, z), \ldots, \phi_k(x, y, z)\) are quantifier-free formulas in the language of rings augmented by names for the elements of \(A\), such that \(k \models \psi_j(a), \Gamma \models \theta_j(g)\) and \((\Omega, k, \Gamma) \models \phi_j(\vec{r}, a, g)\) for \(j = 1, \ldots, k\). Then

\[
(\Omega, k, \Gamma) \models \exists y \exists z (U(y) \land V(z) \land \psi(y) \land \theta(z) \land \phi(\vec{r}, y, z)),
\]

where

\[
\psi(y) := \bigwedge_j \psi_j(y), \quad \theta(z) := \bigwedge_j \theta_j(z), \quad \varphi(x, y, z) := \bigwedge_j \varphi_j(x, y, z).
\]

The assumption on \(\vec{r}\) and \(\vec{s}\) then gives

\[
(\Omega, k, \Gamma) \models \exists y \exists z (U(y) \land V(z) \land \psi(y) \land \theta(z) \land \phi(\vec{s}, y, z)).
\]

Hence we have a partial \(y, z\)-type over \(A\vec{s}\) in \((\Omega, k, \Gamma)\) consisting of the formulas \(U(y_i)\) and \(V(z_i)\) for \(i = 0, 1, 2, \ldots\), the quantifier-free formulas \(\psi(y)\) in the language of rings augmented by names for the elements of \(k_0\) such that \(k \models \psi(a)\), the quantifier-free formulas \(\theta(z)\) in the language of groups augmented by names for the elements of \(\Gamma_0\) such that \(\Gamma \models \theta(g)\), and the formulas \(\phi(\vec{s}, y, z)\) such that \(\phi(x, y, z)\) is a quantifier-free formula in the language of rings augmented by names for the elements of \(A\) and \((\Omega, k, \Gamma) \models \phi(\vec{r}, a, g)\).

Let \(b, h\) with \(b = (b_0, b_1, b_2, \ldots) \in k^\mathbb{N}\) and \(h = (h_0, h_1, h_2, \ldots) \in \Gamma^\mathbb{N}\) realize this \(y, z\)-type in \((\Omega, k, \Gamma)\). Then \(\{b_0, b_1, b_2, \ldots\}\) is the underlying set of a field \(k'' \preceq k\) and we have a field isomorphism

\[
i^f : k' \to k'', \quad i^f(a_n) = b_n \text{ for all } n.
\]
Likewise, \(\{h_0, h_1, h_2, \ldots \} \) is the underlying set of a group \(\Gamma'' \preceq \Gamma \) and we have a group isomorphism
\[
\iota^g : \Gamma' \to \Gamma'', \quad \iota^g(g_n) = h_n \text{ for all } n.
\]
Note that \(\iota^f \) is a partial elementary map from \(k \) to itself and is the identity on \(k_0 \). Likewise, \(\iota^g \) is a partial elementary map from \(\Gamma \) to itself and is the identity on \(\Gamma_0 \). Moreover, \(\iota^f \) and \(\iota^g \) have a common extension to a field isomorphism
\[
\iota : k'(\Gamma')((\vec{r})) \cong k''(\Gamma'')((\vec{s})^\ac)
\]
sending \(\vec{r} \) to \(\vec{s} \). Put \(\Omega'_1 := k'(\Gamma')((\vec{r})^\ac) \) and \(\Omega'_2 := k''(\Gamma'')((\vec{s})^\ac) \). Then
\[
(\Omega'_1, k', \Gamma'), (\Omega'_2, k'', \Gamma'') \in \text{Sub}(\Omega, k, \Gamma),
\]
and we have an isomorphism
\[
(\Omega'_1, k', \Gamma') \cong (\Omega'_2, k'', \Gamma'')
\]
that extends \(\iota \). It carries \(\vec{r} \) to \(\vec{s} \) and belongs to \(\mathcal{I} \).

Note that if \(\Gamma \) is divisible or of finite rank, then the condition in the theorem that \(\Gamma/\Gamma[p] \) is finite for each \(p \) is satisfied.

References