A TALK ON EXPONENTIAL POLYNOMIALS

AYHAN GÜNAYDIN

INTRODUCTION

We are going to prove the following.

Theorem.(Assuming Schanuel’s conjecture) Let \(p(X, Y) \in \mathbb{C}[X,Y] \) be irreducible such that both \(X \) and \(Y \) appear in \(p \). Then there is a generic point on the curve defined by \(p \) of the form \((z, \exp(z))\).

In order to prove this it is enough to show the following. (It is not a trivial reduction; the reader should look at the paper for the details.)

Proposition.(Assuming Schanuel’s conjecture) Let \(p(X, Y) \in \mathbb{C}[X,Y] \) be irreducible such that both \(X \) and \(Y \) appear in \(p \) and let \(K \) be an algebraically closed subfield of \(\mathbb{C} \) of finite transcendence degree. Then there are finitely many \(z \in K \) such that \(p(z, \exp(z)) = 0 \).

1. Linear equations in fields of finite transcendence degree

In this section let \(K \) be an algebraically closed subfield of \(\mathbb{C} \) of finite transcendence degree containing \(\pi \) and let \(\Gamma := \exp(K) \). Here we consider solutions in \(\Gamma \) of \(\lambda_1 x_1 + \cdots + \lambda_k x_k = 1\), where \(\lambda_1, \ldots, \lambda_k \in K\). We say that a solution \(\vec{\gamma} = (\gamma_1, \ldots, \gamma_k) \) in \(\Gamma \) of \((\ast)\) is non-degenerate if \(\sum_{I \subseteq \{1, \ldots, k\}} \lambda_I \gamma_I \neq 0 \) for every nonempty proper subset \(I \) of \(\{1, \ldots, k\} \).

We begin with some notations that will be useful.

Definition 1.1. Let \(G \) be an abelian group, written multiplicatively and for \(n > 0 \) put \(G^{[n]} = \{g^n : g \in G\} \). We say that a subgroup \(H \) is pure in \(G \) if \(H \cap G^{[n]} = H^{[n]} \) for all \(n > 0 \). We say that \(H \) is radical in \(G \) if it is pure in \(G \) and it contains all the torsion elements of \(G \).

Given \(A \subseteq G \), we set \(\langle A \rangle_G \) to be the smallest radical subgroup of \(G \) containing \(A \). That is,

\[\langle A \rangle_G = \{ g \in G : g^n \in [A]_G \text{ for some } n \in \mathbb{N} \} \]

where \([A]_G \) is the subgroup generated by \(A \). When \(G \) is clear from the context, we will drop the subscripts and just write \(\langle A \rangle \) and \([A] \). For instance throughout this section the ambient group is \(\mathbb{C}^\times \) unless explicitly stated otherwise.

Since \(K \) is a field of characteristic 0, it is easy to see that \(\Gamma \) is divisible; in particular it is pure in \(\mathbb{C}^\times \). Moreover \(\Gamma \) is a radical subgroup of \(\mathbb{C}^\times \) since \(\sqrt{-1}\pi \) is in \(K \). Therefore, so is \(\Gamma \cap K^\times \).
Given a_1, \ldots, a_n in \mathbb{C}, by \vec{a} we denote the tuple (a_1, \ldots, a_n) and $\exp(\vec{a})$ denotes $(\exp(a_1), \ldots, \exp(a_n))$.

Note the following straightforward consequence of Schanuel’s Conjecture concerning the rank of $\Gamma \cap K^\times$.

Lemma 1.2. (Assuming Schanuel’s conjecture)

The rank of $\Gamma \cap K^\times$ is at most d.

On the basis of this lemma, take $\beta_1, \ldots, \beta_t \in K$ where $t \leq d$ such that $\pi\sqrt{-1}, \beta_1, \ldots, \beta_t$ are \mathbb{Q}-linearly independent and

$$\Gamma \cap K^\times = \langle \exp(\beta_1), \ldots, \exp(\beta_t) \rangle.$$

Recall Lemma 8.2 from [2].

Lemma 1.3. Let F be a field with a subfield E and subgroups G, H of F^\times. Suppose also that H is a radical subgroup of G. Then the following two conditions are equivalent:

1. For every $\lambda_1, \ldots, \lambda_k \in E$, the equation $[x^a]$ has the same non-degenerate solutions in H as in G.
2. Whenever g_1, \ldots, g_n in G are multiplicatively independent over H, they are algebraically independent over the field $E(H)$.

This allows us to prove the following.

Proposition 1.4. (Assuming Schanuel’s conjecture)

There exists a radical subgroup Γ^* of Γ of finite rank containing $\Gamma \cap K^\times$ such that for every $\lambda_1, \ldots, \lambda_k \in K$, the equation $[x^a]$ has the same non-degenerate solutions in Γ^* as in Γ.

Remark. It follows from the proof above that if the rank of $\Gamma \cap K^\times$ is already d, then we can take Γ^* to be $\Gamma \cap K^\times$.

Let $\Gamma^* = \langle \exp(a_1), \ldots, \exp(a_s) \rangle$ with $a_1, \ldots, a_s \in K$ linearly independent over $\sqrt{-1}\pi$.

From now on, \mathbb{U} denotes the multiplicative group of all roots of unity. Recall the following results.

Lemma 1.5. (Lemma 6.1 in [3])

Let $E \subseteq F$ be fields such that $E \cap \mathbb{U} = F \cap \mathbb{U}$ and G be a pure subgroup of E^\times. Then for $\lambda_1, \ldots, \lambda_n \in E^\times$, the equation $[x^a]$ has the same non-degenerate solutions in G as in $(G)_{F^\times}$.

Lemma 1.6. (Proposition 2.2 (ii) in [10])

Let L be a finitely generated extension of $\mathbb{Q}(\mathbb{U})$. Then the quotient group L^\times / \mathbb{U} is free.

We can now reduce our situation from K to any subfield L that is finitely generated over $\mathbb{Q}(\mathbb{U})$ containing the generators $\exp(\vec{a})$.

Lemma 1.7. Let L be a finitely generated extension of $\mathbb{Q}(\mathbb{U})$ containing $\exp(\vec{a})$. Then there are $c_1, \ldots, c_t \in K$ linearly independent over $\sqrt{-1}\pi$ such that for every $\lambda_1, \ldots, \lambda_k \in L$, all the nondegenerate solutions of $[x^a]$ in Γ^* are in $\mathbb{U} \cdot [\exp(\vec{c})]$.

Proof. ...
2. Specialisations and reduction to a number field

We first remark the following easy observation, whose proof is in Lemme 4 of \[8\], which we restate as Lemma 2.3 below (note that there, \(R \) is a finitely generated \(\mathbb{Q} \)-algebra, but the conclusion is stronger).

Lemma 2.1. Let \(R \) be a subring of \(\bar{\mathbb{Q}}[S] \), where \(S \) is a finite subset of \(\mathbb{C} \). Suppose that \(b_1, \ldots, b_q \) are elements of \(R \) and let \(q' \) be the linear dimension over \(\bar{\mathbb{Q}} \) of \(\tilde{b} \). Then there are ring homomorphisms \(\phi_1, \ldots, \phi_{q'} \) from \(R \) to \(\bar{\mathbb{Q}} \) fixing \(k := R \cap \mathbb{Q} \) such that for every \(\alpha_1, \ldots, \alpha_q \in k \) with \(\alpha_1 b_1 + \cdots + \alpha_q b_q \neq 0 \) there is some \(i \in \{1, \ldots, q'\} \) with \(\phi_i(\alpha_1 b_1 + \cdots + \alpha_q b_q) \neq 0 \).

Proof: ...

In order to reduce our setting to a number field in the next section, we need to carefully choose a specialization to \(\bar{\mathbb{Q}} \). This is ensured by the density of closed points in specific subsets of the spectrum of any finitely generated \(\mathbb{Q} \)-algebra \(R \). Given such \(R \) and a polynomial \(Q \) over \(R \) irreducible in \(\text{Frac}(R)[X] \), denote by \(\Omega(Q) \) the collection of prime ideals \(p \) of \(R \) such \(Q \mod p \) has the same degree as \(Q \) and it is irreducible as a polynomial over \(\text{Frac}(R/p) \). Recall that a Hilbert set \(\Omega \) is a subset of \(\text{Spec}(R) \) which contains a finite intersection of non-empty open sets and sets of the form \(\Omega(Q) \).

Fact 2.2. Let \(R \) be a finitely generated \(\mathbb{Q} \)-algebra.

(i) Given a finitely generated subgroup \(G \) of \(R^\times \), there is a Hilbert set \(\Omega \) such that the residue map \(G \to (R/p)^\times \) is injective for every \(p \) in \(\Omega \).

(ii) For any Hilbert set \(\Omega \) in \(R \), the collection of maximal ideals contained in \(\Omega \) is dense in \(\text{Spec}(R) \).

Combining the above with the proof of Lemma 2.1, one obtains the following result.

Lemma 2.3. (Lemme 4 in \[8\])

Let \(R \) be a finitely generated \(\mathbb{Q} \)-algebra with largest subfield \(k \) and \(G \) a finitely generated subgroup of \(R^\times \). Suppose also that \(b_1, \ldots, b_q \) are elements of \(R \) that generate a \(\mathbb{Q} \)-linear space of dimension \(q' \). Then there are ring homomorphisms \(\phi_1, \ldots, \phi_{q'} \) from \(R \) into \(\bar{\mathbb{Q}} \) such that each \(\phi_i \) is injective on \(G \) and that for every \(\alpha_1, \ldots, \alpha_q \in k \) with \(\alpha_1 b_1 + \cdots + \alpha_q b_q \neq 0 \), there is \(i \in \{1, \ldots, q'\} \) with

\[\phi_i(\alpha_1 b_1 + \cdots + \alpha_q b_q) \neq 0. \]

In order to bound the degrees of the roots of unity appearing in Lemma 2.1, we will need the following result.

Theorem 2.4. (Theorem 1 in \[11\])

Let \(F \) be a number field, \(a_0, a_1, \ldots, a_k \) in \(F \) and \(\zeta \) a root of unity of order \(Q \) such that

\[a_0 + \sum_{j=1}^k a_j \zeta^{n_j} = 0 \]

with \(\gcd(Q, n_1, \ldots, n_k) = 1 \). Let \(\delta = |F \cap \mathbb{Q}(\zeta) : \mathbb{Q}| \) and suppose that for any nonempty proper subset \(I \) of \(\{0, 1, \ldots, k\} \) the sum \(\sum_{j \in I} a_j \zeta^{n_j} \neq 0 \). Then for each prime \(p \) and \(n > 0 \), if \(p^{n+1} \mid Q \), then \(p^n | 2\delta \) and

\[k \geq \dim_F(F + F \zeta^{n_1} + \cdots + F \zeta^{n_k}) \geq 1 + \sum_{p|Q,p|Q\mid Q} \left[\frac{p - 1}{\gcd(p, p - 1)} - 1 \right]. \]
In particular, the order Q of ζ is bounded by a constant depending on k and δ (and therefore $[F : Q]$).

The last result of this section concerns work from [7]. Work inside a number field F. For t, r in \mathbb{N} consider polynomials Q_1, \ldots, Q_r over F in t many variables as well as a finite set $Z := \{a_{ji} : j = 1, \ldots, r; i = 1, \ldots, t\}$ in F^\times. We are interested in describing the set of tuples \vec{m} in \mathbb{Z}^t such that

\begin{equation}
\sum_{j=1}^{r} Q_j(\vec{m}) \prod_{i=1}^{t} a_{ji}^{m_i} = 0.
\end{equation}

For such an equation (**), let H be the subgroup of those \vec{m} in \mathbb{Z}^t such that

\begin{equation}
\prod_{i=1}^{t} a_{ji}^{m_i} = \prod_{i=1}^{t} a_{j'i}^{m_i},
\end{equation}

for every $j, j' \in \{1, \ldots, r\}$.

Théorème 6 of [7] describes precisely the solutions of (**), however for our purposes the following simplified version suffices.

Theorem 2.5. Suppose that H is trivial. Then there are constants δ, η depending only on Z and the field F such that if \vec{m} in \mathbb{Z}^t satisfies (**) and for every nonempty proper $J \subseteq \{1, \ldots, r\}$ the sum $\sum_{j \in J} Q_j(\vec{m}) \prod_{i=1}^{t} a_{ji}^{m_i}$ is nonzero, then

\[||\vec{m}|| \leq \delta \log ||\vec{m}|| + \eta, \]

where $||\vec{m}|| := \max_i |m_i|$.

Remark. The independence of the constants δ, η from the coefficients of Q_i follows from the proof of [7]. Therefore, there is some $N \in \mathbb{N}$ such that if \vec{m} satisfies a non-trivial equation (**), then $||\vec{m}|| \leq N$.

3. **The Main Theorem**

We have now all the necessary tools to prove the following result.

Theorem 3.1. (Assuming Schanuel’s conjecture) For an irreducible complex polynomial p in two variables where both variables appear, the entire function $f(z) := p(z, \exp(z))$ has infinitely many algebraically independent zeros.

Proof. Here we keep the notations from the previous sections. In particular, K is an algebraically closed subfield of \mathbb{C} of finite transcendence degree containing π and the coefficients of p.

Using Hadamard Factorization Theorem (see for instance [6]) and a result proved independently by Henson and Rubel [5] and by van den Dries [1], we have that $f(z) = p(z, \exp(z))$ has infinitely many zeros in \mathbb{C} (for a proof of this, see [9]). Therefore in order to prove our theorem, it suffices to show that $f(z)$ has finitely many zeros in K.

Write

\[p(X, Y) = \sum_{j=0}^{m} p_j(X)Y^j, \]
where \(p_j(X) \in K[X] \). Also set \(I = \{ j \in \{0, \ldots, m\} \mid p_j \neq 0 \} \). Since \(p \) is irreducible, 0 lies in \(I \). The set \(\{ z \in \mathbb{C} \mid p_j(z) = 0 \text{ for some } j \in I \} \) is finite. Hence in order to show that there are finitely many solutions in \(K \) to \(p(z, \exp(z)) = 0 \) we need only prove that

\[
W = \{ z \in K \mid \text{for some } j \in I \}
\]

is finite.

Claim. There are \(c_1, \ldots, c_{\ell'} \) in \(K \) linearly independent over \(\sqrt{-1}\pi \) such that

\[
W \subseteq \mathbb{Q}\pi \sqrt{-1} + \mathbb{Z}c_1 + \cdots + \mathbb{Z}c_{\ell'}.
\]

Proof. ...

\(\square \)

We now apply Theorem 2.4 to get a finer description of \(W \).

Claim. There is \(N \in \mathbb{N} \) such that if \(z \in W \) then there are \(k, m_1, \ldots, m_{\ell'} \) in \(\mathbb{Z} \) and \(0 < n < N \) such that

\[
z = \frac{k2\pi \sqrt{-1}}{n} + \sum_{j=1}^{\ell'} m_j c_j
\]

Proof. ...

\(\square \)

Remark. Using this claim we may assume, after modifying \(f \) (finitely many times) that its zeroes in \(K \) are of the form

\[
l2\pi \sqrt{-1} + \sum_{j=1}^{\ell'} m_j c_j
\]

with \(l, m_1, \ldots, m_{\ell'} \in \mathbb{Z} \).

We have reduced the theorem to prove that there are only finitely many \((l, \vec{m})\) such that

\[
(***) \sum_{j \in I} p_j(l2\pi \sqrt{-1} + \sum_{j=1}^{\ell'} m_j c_j)(\vec{d}^\vec{m})^j = 0 \text{ and } p_j(l2\pi \sqrt{-1} + \vec{m} \cdot \vec{c}) \neq 0 \text{ for } j \in I.
\]

Let \(R \) be the \(\mathbb{Q} \)-algebra generated by the coefficients of \(p, \pi \sqrt{-1}, \vec{c}, \vec{d} \) and their inverses. Let \(G \) be the multiplicative subgroup of \(R^\times \) generated by \(\vec{d} \). Choose \(\phi_1, \ldots, \phi_q \) ring homomorphisms from \(R \) to \(\mathbb{Q} \) injective on \(G \) as in Lemma 2.3 and let \(F \) be the compositum field of all their images.

Let \((l, \vec{m})\) satisfy \((***)\) and choose \(\nu \) in \(\{1, \ldots, q\} \) such that

\[
\phi_\nu(p_0(l2\pi \sqrt{-1} + \sum_{j=1}^{\ell'} m_j c_j)) \neq 0.
\]

The map \(\phi_\nu \) transforms \((***)\) into

\[
\sum_{j \in I} p_{\nu j}(\vec{m}) \prod_{i=1}^{\ell'} (\phi_\nu(d_i^j))^{m_i} = 0,
\]
where \(p_{jl}(\vec{X}) \) is a polynomial in \((1 + t')\)-variables such that
\[
p_{jl}(\vec{m}) = \phi_{\nu}(p_{j}(l2\pi \sqrt{-1} + \vec{m} \cdot \vec{c})).
\]
We may assume that no subsum is zero. Hence applying Theorem 2.5 and the remark after it, there is \(T \) in \(\mathbb{N} \) independent of \(l \) such that \(||\vec{m}|| \leq T \). The proof finishes by noting that for each \(\vec{m} \), there are finitely many \(l \)'s satisfying (***). \(\square \)

References

